Search results for: seedling production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2049

Search results for: seedling production

2049 The Role of Thermo Priming on Improving Seedling Production Technology (Ispt) in Soybean [Glycine max (L.) Merrill] Seeds

Authors: Behzad Sani, Vida Jodaeian

Abstract:

In order to determine the impact of thermo priming on germination of soybean seeds, an experiment was conducted as a completely randomized design with three replications. The factors of studied included different time thermo priming (control, 5 and 10 minutes) through the placing seeds were exposed to oven. The results showed that the effect of thermo priming was significant on germination percentage, seedling dry weight and seedling vigour in P ≤ 0.05. Mean comparison showed that the highest germination percentage (77%), seedling dry weight (1.39 g) and seedling vigour (107.03) were achieved by 10 minutes thermo priming. 

Keywords: Thermo priming, seedling, seedling production, seedling growth, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
2048 Economic Assessment of Green House for Cultivation of Float Based Seedling Production in India

Authors: Srinath Ramakkrushnan, Aswathaman Vijayan

Abstract:

In conventional seedling production, the seedlings are being grown in the open field under natural conditions. Here they are susceptible to sudden changes in climate were their quality and yield is affected. Quality seedlings are essential for good growth and performance of crops in main field; they serve as a foundation for the economic returns to the farmer. Producing quality seedling demands usage of hybrid seeds as they have the ability to result in better yield, greater uniformity, improved color, disease resistance, and so forth. Hybrid seed production poses major operational challenge and its seed use efficiency plays an important role. Thus in order to overcome the difficulties currently present in conventional seedling production and to efficiently use hybrid seeds, ITC Limited Agri Business Divisions - Sustainability Cell as conceptualized a novel method of seedling production unit for farmers in West Godavari District of Andhra Pradesh. The “Green House based Float Seedling" methodology aims at a protected cultivation technique wherein the micro climate surrounding the plant/seedling body is controlled partially or fully as per the requirement of the species. This paper reports on the techno economic evaluation of green house for cultivation of float based seedling production with experimental results that was attained from the pilot implementation in West Godavari District, Rajahmundry region of India.

Keywords: Economic Assessment, Float Seedling, Green House, ITC Limited, Payback period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4161
2047 Effects of Salinity and Drought Levels in Seed Germination of Five Crop Species

Authors: Ahmad Gholami, Saeed Sharafi, Hamid Abbasdokht

Abstract:

The heterotrophic seedling growth can be defined as a product of two components: (1) the weight of mobilized seed reserve, and (2) conversion efficiency of utilized seed reserve to seedling tissue. The first component can be further divided into (1) initial seed weight, and (2) the fraction of seed reserve, which is mobilized. The objective of this study was the identification of the sensitive seedling growth component(s) in response to drought and salinity stresses. Two experiments were separately conducted using various salinity levels (osmotic pressure) of 0, 0.25, 0.50, 0.75, 1, 1.25 and 1.5 MPa created using NaCl as first experiment and by polyethylene glycol (drought stress) of 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4 MPa in second experiment. Seeds of five crops species (Hordeum vulgare, Brassica napus, Zea mays, Medicago sativa and Medicago scutellata) were used in each experiment. In both experiments, seedling growth, fraction of seed reserve utilization and weight of mobilized seed reserve decreased with increasing drought and salt intensity. However, drought and salinity stresses had no effect on the conversion efficiency. It was concluded that the sensitive component of seedling growth is the weight of mobilized seed reserve.

Keywords: Salinity, Drought, Seed reserve, Seedling, Cropsspecies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2046 Hydropriming and Osmopriming Effects on Cumin(Cuminum Cyminum L.) Seeds Germination

Authors: E. Neamatollahi, M. Bannayan, A. Souhani Darban, A. Ghanbari

Abstract:

In production of medicinal plants, seed germination is very important problem. The treated seeds (control, hydro priming and ZnSO4) of Cumin (Cuminum cyminum L.) were evaluated at germination and seedling growth for tolerance to salt (NaCl and Na2SO4) conditions at the same water potentials of 0.0, -0.3, -0.6, - 0.9 and -1.2MPa. Electrical conductivity (EC) values of the NaCl solutions were 0.0, 6.5, 12.7, 18.4 and 23.5 dSm-1, respectively. The objective of the study was to determine factors responsible for germination and early seedling growth due to salt toxicity or osmotic effect and to optimize the best priming treatment for these stress conditions. Results revealed that germination delayed in both solutions, having variable germination with different priming treatments. Germination, shoot and weight, root and shoot length were higher but mean germination time and abnormal germination percentage were lower in NaCl than Na2SO4 at the same water potential. The root / shoot weight and R/S length increased with increase in osmotic potential in both NaCl and Na2SO4 solutions. NaCl had less inhibitor effect on seedling growth than the germination. It was concluded that inhibition of germination at the same water potential of NaCl and Na2SO4 resulted from salt toxicity rather than osmotic effect. Hydro priming increased germination and seedling growth under salt stress. This protocol has practical importance and could be recommended to farmers to achieve higher germination and uniform emergence under field conditions.

Keywords: Priming, Germination, Nacl, ZnSo4, Na2So4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
2045 Effects of PEG and NaCl Stress on Two Cultivars of Corn (Zea mays L.) at Germination and Early Seedling Stages

Authors: A. Farsiani, M. E. Ghobadi

Abstract:

To study on effect of PEG and NaCl stress on germination and early seedling stages on two cultivar of corn, two separated experiment were laid out at physiology laboratory, faculty of Agriculture, Razi University, Kermanshah, Iran in 2009. This investigation was performed as factorial experiment under Complete Randomized Design (CRD) with three replications. Cultivar factor contains of two varieties (sweet corn SC403 and Flint corn SC704) and five levels of stress (0, -2, -4, -6 and -8 bar). The principal aim of current study was to compare the two varieties of maize in relative to the stress conditions. Results indicated that significant decrease was observed in percentage of germination, germination rate, length of radicle and plumule and radicle and plumule dry matter. On the basis of the results, NaCl as compared with PEG had more effect on germination and early seedling stage and sweet corn had more resistant than flint corn in both stress conditions.

Keywords: Corn, Early Seedling Stage, Germination, PEG andNaCl Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
2044 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: Nanoparticles, seed germination, seed soaking, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
2043 Preliminary Evaluation of Different Water Qualities on Leucaena Leucocephala Seed Germination and Seedling Growth

Authors: Maher J. Tadros, Naji K. Al-Mefleh

Abstract:

The evaluation of non-conventional water resources on seed germination and seedling growth performance at early growth stages is still in progress especially in forage crops. This study was designed to test the effect of four types of water qualities (treated wastewater (TWW), industrial water (IW), grey water (GW), and Distilled water (DW)) on germination and early seedling vigor of Leucaena leucocephala. The results showed that the germination was not significantly affected by the different water qualities. Seed germination reached maximum after 17, 14, 14, and 21 days under GW, IW, TWW, and DW treatments, respectively. The highest mean of shoot length was scored under the GW treatment. And, the highest mean of root length was scored under DW which was not significant from GW treatment. The means of shoot fresh was the highest under the TWW. The means of root fresh weight was not significantly different from each other's under different treatments. The growth performance was in progress with no mortality during 21 days of growth. Thus, the best non-conventional water qualities alternatives based on the cleanness, nutrients, and toxicity are the GW, TWW and IW, respectively.

Keywords: Seed germination, Growth performance, Leucaena, Multipurpose forest trees, Waste water, Grey water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
2042 The Effect of Hydropriming and Halopriming on Germination and Early Growth Stage of Wheat (Triticum aestivum L.)

Authors: Hamid Abbasdokht , Mohammad Reza Edalatpishe, Ahmad Gholami

Abstract:

In order to study of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum) an experiment was carried out in laboratory of the Department of Agronomy and Plant breeding, Shahrood University of Technology. Seed treatments consisted of T1: control (untreated seeds), T2: soaking in distilled water for 18 h (hydropriming). T3: soaking in - 1.2 MPa solution of CaSO4 for 36 h (halopriming). Germination and early seedling growth were studied using distilled water (control) and under osmotic potentials of -0.4, -0.8 and -1.2 MPa for NaCl and polyethylene glycol (PEG 6000), respectively. Results showed that Hydroprimed seeds achieved maximum germination seedling dry weight, especially during the higher osmotic potentials. Minimum germination was recorded at untreated seeds (control) followed by osmopriming. Under high osmotic potentials, hydroprimed seeds had higher GI (germination index) as compared to haloprimed or untreated seeds. Interaction effect of seed treatment and osmotic potential significantly affected the seedling vigour index (SVI).

Keywords: Wheat, hydropriming, halopriming, germination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
2041 The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize

Authors: A. Gholami, S. Shahsavani, S. Nezarat

Abstract:

The effect of plant growth-promoting rhizobacteria (PGPR) on seed germination, seedling growth and yield of field grown maize were evaluated in three experiments. In these experiments six bacterial strains include P.putida strain R-168, P.fluorescens strain R-93, P.fluorescens DSM 50090, P.putida DSM291, A.lipoferum DSM 1691, A.brasilense DSM 1690 were used. Results of first study showed seed Inoculation significantly enhanced seed germination and seedling vigour of maize. In second experiment, leaf and shoot dry weight and also leaf surface area significantly were increased by bacterial inoculation in both sterile and non-sterile soil. The results showed that inoculation with bacterial treatments had a more stimulating effect on growth and development of plants in nonsterile than sterile soil. In the third experiment, Inoculation of maize seeds with all bacterial strains significantly increased plant height, 100 seed weight, number of seed per ear and leaf area .The results also showed significant increase in ear and shoot dry weight of maize.

Keywords: Azospirillum, biofertilizer, Maize, PGPR, Pseudomonas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8361
2040 Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes

Authors: Rahim Ada, Zamari Temory, Hasan Dalgiç

Abstract:

Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10 and 20g l-1) and temperatures (10 and 20oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20oC the highest germination percentage (93.88 and 94.32%), shoot length (4.60 and 8.72cm) and root length (4.27 and 6.54cm) shoot dry weight (22.37mg and 25.99mg) and root dry weight (2.22 and 2.47mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20g l-1 salt concentration found germination percentage (21.28 and 26.66%), shoot (1.32 and 1.35cm) and root length (1.04 and 1.10cm) shoot (8.05mg and 7.49mg) and root dry weight (0.83 and 0.98mg) at 10 and 20oC.

Keywords: NaCl, Safflower, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
2039 Phytotoxicity of Daphne Gnidium L. Occurring in Tunisia

Authors: Ladhari A., Omezzine F., Rinez A., Haouala R.

Abstract:

Phytotoxicity of Daphne gnidium L. was evaluated through the effect of incorporating leaves, stems and roots biomass into soil (at 12.5, 25, 50g/Kg) and irrigation by their aqueous extracts (50g/L), on the growth of two crops (Lactuca sativa L. and Raphanus sativus L.) and two weeds (Peaganum harmala L. and Scolymus maculatus L.). Results revealed a perceptible phytotoxic effect which increased with dose and concentration. At the highest dose, roots and leaves residues was the most toxic and caused total inhibition respectively, for lettuce and thistle seedling growth. Irrigation with aqueous extracts of D. gnidium different organs decreased also seedlings length of all test species. Stems extract was more inhibitor on thistle than peganum seedling growth; it induced a significant reduction of 80% and 67%, for, respectively, roots and shoots. Results of the present study suggest that different organs of D. gnidium could be exploited in the management of agro-ecosystems.

Keywords: Biomass, Daphne gnidium L., phytoxicity, seedlinggrowth

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2038 Production Planning and Measuring Method for Non Patterned Production System Using Stock Cutting Model

Authors: S. Homrossukon, D. Aromstain

Abstract:

The simple methods used to plan and measure non patterned production system are developed from the basic definition of working efficiency. Processing time is assigned as the variable and used to write the equation of production efficiency. Consequently, such equation is extensively used to develop the planning method for production of interest using one-dimensional stock cutting problem. The application of the developed method shows that production efficiency and production planning can be determined effectively.

Keywords: Production Planning, Parallel Machine, Production Measurement, Cutting and Packing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
2037 The Effect of Multiple Environmental Conditions on Acacia Senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdoelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence, it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven-day-old seedlings were assigned to the treatments in split-plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sandy soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C% and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Sahara, Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410
2036 From Hype to Ignorance – A Review of 30 Years of Lean Production

Authors: Stefan Schmidt

Abstract:

Lean production (or lean management respectively) gained popularity in several waves. The last three decades have been filled with numerous attempts to apply these concepts in companies. However, this has only been partially successful. The roots of lean production can be traced back to Toyota-s just-in-time production. This concept, which according to Womack-s, Jones- and Roos- research at MIT was employed by Japanese car manufacturers, became popular under its international names “lean production", “lean-manufacturing" and was termed “Schlanke Produktion" in Germany. This contribution shows a review about lean production in Germany over the last thirty years: development, trial & error and implementation as well.

Keywords: Application, JIT, lean production, review, trial and error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
2035 Advantages of a New Manufacturing Facility for the Production of Nanofiber

Authors: R. Knizek, D. Karhankova

Abstract:

The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions NanospiderTM from the company Elmarco, which came into being in 2008. Most of the production facilities, like NanospiderTM, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.

Keywords: Nanomachine, nanospider, spinning slat, electrospinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
2034 Individual Configuration of Production Control to Suit Requirements

Authors: Ben Muenzberg, Prof. Peter Nyhuis

Abstract:

The logistical requirements placed on industrial manufacturing companies are steadily increasing. In order to meet those requirements, a consistent and efficient concept is necessary for production control. Set up properly, production control offers considerable potential with respect to achieving the logistical targets. As experience with the many production control methods already in existence and their compatibility is, however, often inadequate, this article describes a systematic approach to the configuration of production control based on the Lödding model. This model enables production control to be set up individually to suit a company and the requirements. It therefore permits today-s demands regarding logistical performance to be met.

Keywords: Production, planning, control, configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
2033 The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling

Authors: M. Z. Norashikin, M. Z. Ibrahim

Abstract:

The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.

Keywords: Environment, waste, plastic, biodegradable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4922
2032 Production Structure Monitoring - A Neurologic Based Approach

Authors: G. Reinhart, J. Pohl

Abstract:

Manufacturing companies are facing a broad variety of challenges caused by a dynamic production environment. To succeed in such an environment, it is crucial to minimize the loss of time required to trigger the adaptation process of a company-s production structures. This paper presents an approach for the continuous monitoring of production structures by neurologic principles. It enhances classical monitoring concepts, which are principally focused on reactive strategies, and enables companies to act proactively. Thereby, strategic aspects regarding the harmonization of certain life cycles are integrated into the decision making process for triggering the reconfiguration process of the production structure.

Keywords: Continuous Factory Planning, Production Structure, Production Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
2031 A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, is Indispensable for Seed Germination under Moderate Salt Stress

Authors: H. Sakamoto, J. Tochimoto, S. Kurosawa, M. Suzuki, S. Oguri

Abstract:

Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin-repeat motif that has been implicated in diverse cellular processes such as signal transduction. The shg1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild-type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild-type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.

Keywords: Germination, ankyrin repeat, Arabidopsis, salt tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
2030 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6307
2029 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
2028 Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System

Authors: Tomas Duranik, Juraj Ruzbarsky, Markus Stopper

Abstract:

CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.

Keywords: CONWIP, constant work in process, delivery reliability, hybrid production planning, PPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2027 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
2026 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian

Abstract:

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Keywords: Aggregate Production Planning, Costs, and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
2025 Optimization of Structure of Section-Based Automated Lines

Authors: R. Usubamatov, M. Z. Abdulmuin

Abstract:

Automated production lines with so called 'hard structures' are widely used in manufacturing. Designers segmented these lines into sections by placing a buffer between the series of machine tools to increase productivity. In real production condition the capacity of a buffer system is limited and real production line can compensate only some part of the productivity losses of an automated line. The productivity of such production lines cannot be readily determined. This paper presents mathematical approach to solving the structure of section-based automated production lines by criterion of maximum productivity.

Keywords: optimization production line, productivity, sections

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
2024 Dynamics In Production Processes

Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis

Abstract:

An increasingly dynamic and complex environment poses huge challenges to production enterprises, especially with regards to logistics. The Logistic Operating Curve Theory, developed at the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover, is a recognized approach to describing logistic interactions, nevertheless, it reaches its limits when it comes to the dynamic aspects. In order to facilitate a timely and optimal Logistic Positioning a method is developed for quickly and reliably identifying dynamic processing states.

Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2023 Production Scheduling Improvements in an Automotive Sector Company

Authors: Govind Sharan Dangayach, Himanshu Bhatt

Abstract:

The paper attempts to overcome the fluctuations occurring in demand of the components in an automotive sector company. Resource and time being the strict constraints, the production is not able to match the pace of the fluctuating demand. So, we introduce some production schedules that help in meeting out the required demand. The merits and demerits of the approaches are also highlighted.

Keywords: Production scheduling, Demand rise, Capacity constrained resource (CCR), Overtime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
2022 Standardization and Adaption Requirements in Production System Transplants

Authors: G. Schuh, T. Potente, D. Kupke, S. Ivanescu

Abstract:

As German companies roll out their standardized production systems to offshore manufacturing plants, they face the challenge of implementing them in different cultural environments. Studies show that the local adaptation is one of the key factors for a successful implementation. Thus the question arises of where the line between standardization and adaptation can be drawn. To answer this question the influence of culture on production systems is analysed in this paper. The culturally contingent components of production systems are identified. Also the contingency factors are classified according to their impact on the necessary adaptation changes and implementation effort. Culturally specific decision making, coordination, communication and motivation patterns require one-time changes in organizational and process design. The attitude towards rules requires more intense coaching and controlling. Lastly a framework is developed to depict standardization and adaption needs when transplanting production systems into different cultural environments.

Keywords: Culture, influence of national culture on production systems, lean production, production systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
2021 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials

Authors: J. Ranogajec, O. Rudic, S. Pasalic, S. Vucetic, D. Cjepa

Abstract:

The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.

Keywords: Cultural heritage. Materials compatibility. Pilot production. Self-cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
2020 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616