Search results for: rehabilitation robotics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 224

Search results for: rehabilitation robotics

224 PYTHEIA: A Scale for Assessing Rehabilitation and Assistive Robotics

Authors: Yiannis Koumpouros, Effie Papageorgiou, Alexandra Karavasili, Foteini Koureta

Abstract:

The objective of the present study was to develop a scale called PYTHEIA. The PYTHEIA is a self-reported measure for the assessment of rehabilitation and assistive robotics and other assistive technology devices. The development of PYTHEIA faced the absence of a valid instrument that can be used to evaluate the assistive robotic devices both as a whole, as well as any of their individual components or functionalities implemented. According to the results presented, PYTHEIA is a valid and reliable scale able to be applied to different target groups for the subjective evaluation of various assistive technology devices.

Keywords: Rehabilitation, assistive technology, assistive robots, rehabilitation robots, scale, psychometric test, assessment, validation, user satisfaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
223 From Research to Teaching: Integrating Social Robotics in Engineering Degrees

Authors: Yolanda Bolea, Antoni Grau, Alberto Sanfeliu

Abstract:

When industrial robotics subject is taught in a degree in robotics, social and humanoid robotics concepts are rarely mentioned because this field of robotics is not used in industry. In this paper, an educational project related with industrial robotics is presented which includes social and humanoid robotics. The main motivations to realize this research are: i) humanoid robotics will be appearing soon in industry, the experience, based on research projects, indicates their deployment sooner than expected; ii) its educational interest, technology is shared with industrial robotics; iii) it is very attractive, students are interested in this part of the subject and thus they are interested in the whole subject. As a pedagogical methodology, the use of the problem-based learning is considered. Those concepts are introduced in a seminar during the last part of the subject and developed as a set of practices in the laboratory.

Keywords: Higher education in robotics, humanoid robotics, problem-based learning, social robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
222 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
221 Education and Research in Physical Therapy and Rehabilitation in Libya

Authors: W. Astiata, A. Wasif

Abstract:

In this paper, an overview is made on the educational and research activities in the field of physical medicine and rehabilitation in Libya, including development in rehabilitation science, research, training, occupational therapy, physiotherapy and physiatrist, which are mainly concerned with the patients in Libya[3] [13].

Keywords: Physiotherapy, Rehabilitation, Libya, Graduates, Institutions, Universities, Research, Education, Courses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
220 An Intelligent System for Knee and Ankle Rehabilitation

Authors: Dimitar Karastoyanov, Vladimir Monov

Abstract:

The paper is concerned with the state examination as well as the problems during the post surgical (orthopedic) rehabilitation of the knee and ankle joint. An observation of the current appliances for a passive rehabilitation devices is presented. The major necessary and basic features of the intelligent rehabilitation devices are considered. An approach for a new intelligent appliance is suggested. The main advantages of the device are: both active as well as passive rehabilitation of the patient based on the human - patient reactions and a real time feedback. The basic components: controller; electrical motor; encoder, force – torque sensor are discussed in details. The main modes of operation of the device are considered.

Keywords: Ankle, knee, rehabilitation, computer control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
219 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface

Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu

Abstract:

It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.

Keywords: Robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
218 Robotics, Education and Economy

Authors: David G. Maxínez, Francisco Javier Sánchez Rangel, Guillermo Castillo Tapia, Petra Baldovinos Noyola, M. Antonieta García Galván, Moisés G Sierra

Abstract:

Describes the current situation of educational Robotics "the State of the art" its concept, its evolution their niches of opportunity, academic and business and the importance of education and academic outreach. It shows that the development of high-tech automated educational materials influence the teaching-learning process and that communication between machines and humans is a reality.

Keywords: Education, robotics, robots, technology, innovation, educational constructivism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
217 Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Keywords: Geographic information system, Hungary, Jewish quarter, monument, protection, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
216 Tracking Trajectory of a Cable-Driven Robot for Lower Limb Rehabilitation

Authors: Hachmia Faqihi, Maarouf Saad, Khalid Benjelloun, Mohammed Benbrahim, M. Nabil Kabbaj

Abstract:

This paper investigates and presents a cable-driven robot to lower limb rehabilitation use in sagittal plane. The presented rehabilitation robot is used for a trajectory tracking in joint space. The paper covers kinematic and dynamic analysis, which reveals the tensionability of the used cables as being the actuating source to provide a rehabilitation exercises of the human leg. The desired trajectory is generated to be used in the control system design in joint space. The obtained simulation results is showed to be efficient in this kind of application.

Keywords: Cable-driven multibody system, computed-torque controller, lower limb rehabilitation, tracking trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
215 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
214 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients

Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar

Abstract:

We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.

Keywords: Video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
213 Educational Robotics Constructivism and Modeling of Robots using Reverse Engineering

Authors: David G. Maxínez, A. Ferreyra Ramírez, Ismael Echenique Álvarez, Francisco Javier Sánchez Rangel, Guillermo Castillo Tapia, Petra Baldivia Noyola, María Antonieta García Galván

Abstract:

The project describes the modeling of various architectures mechatronics specifically morphologies of robots in an educational environment. Each structure developed by students of pre-school, primary and secondary was created using the concept of reverse engineering in a constructivist environment, to later be integrated in educational software that promotes the teaching of educational Robotics in a virtual and economic environment.

Keywords: Modeling, constructivist, engineering, reverse, robotics education, virtual, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
212 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: Vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
211 Development, Displacement and Rehabilitation: An Action Anthropological Study on Kovvada Reservoir in West Godavari Agency of Andhra Pradesh, India

Authors: Ram Babu Mallavarapu

Abstract:

This paper discusses the issue of tribal development, displacement, rehabilitation and resettlement policies, and implementation in the agency (scheduled / tribal) areas of the West Godavari District, Andhra Pradesh State, India. This study is based on action anthropological approach, conducted among the displaced tribal communities i.e. Konda Reddis and Nayakapods of this region, under the 'Kovvada Reservoir' Project. These groups are traditionally shifting cultivators and popularly known as the Primitive Tribal Groups (PTGs) in the government records. This paper also focuses on the issues of tribal displacement and land alienation due to construction of the Kovvada reservoir, without proper rehabilitation and resettlement, although there are well defined guidelines, procedures and norms for the rehabilitation of Project Affected Persons (PAPs). It is necessary to begin with, to provide an overview of the issues in tribal development and policies related to displacement and rehabilitation in the Indian context as a background to the Kovvada Reservoir Project, the subject of this study.

Keywords: Tribal development, displacement, rehabilitation & resettlement policies, and practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3759
210 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan

Abstract:

This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4541
209 Proposing Robotics Challenge Centered on Material Transportation in Smart Manufacturing

Authors: Brehme D’napoli Reis de Mesquita, Marcus Vin´ıcius de Souza Almeida, Caio Vin´ıcius Silva do Carmo

Abstract:

Educational robotics has emerged as a pedagogical tool, utilizing technological artifacts to engage students’ curiosity and interest. It fosters active learning of STEM education competencies while also cultivating essential behavioral skills. Robotic competitions provide students with platforms to collaboratively devise diverse solutions to shared problems, fostering experience exchange, collaboration, and personal growth. Despite the prevalence of current robotic competitions, especially in Brazil, simulating real-world challenges like natural disasters, there is a notable absence of industry-related tasks. This article presents an educational robotics initiative centered around material transportation within smart manufacturing using automated guided vehicles. The proposed robotics challenge was executed in a competition held in Ac¸ailˆandia city, Maranh˜ao, Brazil, yielding satisfactory results and inspiring teams to develop time-limited solution strategies.

Keywords: Educational robotics, STEM education, robotic competitions, material transportation, smart manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
208 The Impact of Rehabilitation Approaches in the Sustainability of the Management of Small Tanks in Sri Lanka

Authors: N.K.K. Welgama, W.A.D.P. Wanigasundera

Abstract:

Small tanks, the ancient man-made rain water storage systems, support the pheasant life and agriculture of the dry zone of Sri Lanka. Many small tanks were abandoned with time due to various reasons. Such tanks, rehabilitated in the recent past, were found to be less sustainable and most of these rehabilitation approaches have failed. The objective of this research is to assess the impact of the rehabilitation approaches in the management of small tanks in the Kurunegala District of Sri Lanka with respect to eight small tanks. A Sustainability index was developed using seven indicators representing the ability and commitment of the villagers to maintain these tanks. The sustainability index of the eight tanks varied between 79.2 and 47.2 out of a total score of 100. The conclusion is that, the approaches used for tank rehabilitation have a significant effect on the sustainability of the management of these small tanks.

Keywords: Minor irrigation schemes, Participatory, Small Tanks, Sustainable, Water resource management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
207 Acquiring Contour Following Behaviour in Robotics through Q-Learning and Image-based States

Authors: Carlos V. Regueiro, Jose E. Domenech, Roberto Iglesias, Jose L. Correa

Abstract:

In this work a visual and reactive contour following behaviour is learned by reinforcement. With artificial vision the environment is perceived in 3D, and it is possible to avoid obstacles that are invisible to other sensors that are more common in mobile robotics. Reinforcement learning reduces the need for intervention in behaviour design, and simplifies its adjustment to the environment, the robot and the task. In order to facilitate its generalisation to other behaviours and to reduce the role of the designer, we propose a regular image-based codification of states. Even though this is much more difficult, our implementation converges and is robust. Results are presented with a Pioneer 2 AT on a Gazebo 3D simulator.

Keywords: Image-based State Codification, Mobile Robotics, ReinforcementLearning, Visual Behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
206 The Effects of Mirror Therapy on Clinical Improvement in Hemiplegic Lower Extremity Rehabilitation in Subjects with Chronic Stroke

Authors: Hassan M. Abo Salem, Xiaolin Huang

Abstract:

Background: The effectiveness of mirror therapy (MT) has been investigated in acute hemiplegia. The present study examines whether MT, given during chronic stroke, was more effective in promoting motor recovery of the lower extremity and walking speed than standard rehabilitation alone. Methods: The study enrolled 30 patients with chronic stroke. Fifteen patients each were assigned to the treatment group and the control group. All patients received a conventional rehabilitation program for a 4-week period. In addition to this rehabilitation program, patients in the treatment group received mirror therapy for 4 weeks, 5 days a week. Main measures: Passive ankle joint dorsiflexion range of motion, gait speed, Brunnstrom stages of motor recovery, plantar flexor muscle tone by Modified Ashworth Scale. Results: No significant difference was found in the outcome measures among groups before treatment. When compared with standard rehabilitation, mirror therapy improved Ankle ROM, Brunnstrom stages and waking speed (p < 0.05). However, there were no significant differences between two groups on MAS (P > 0.05).Conclusion: Mirror therapy combined with a conventional stroke rehabilitation program enhances lowerextremity motor recovery and walking speed in chronic stroke patients.

Keywords: Mirror therapy, stroke, MAS, walking speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5122
205 Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile

Authors: Keivan Abdollahi, Alireza Mortezaei

Abstract:

The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.

Keywords: Micropile network, rehabilitation, vibration, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
204 Implementation of Lower-Limb Rehabilitation System Using Attraction Motors with a Treadmill

Authors: Young-Lim Choi, Nak-Yun Choi, Jae-Yong Seo, Sang-Il Park, Jong-Wook Kim

Abstract:

This paper proposes a prototype of a lower-limb rehabilitation system for recovering and strengthening patients- injured lower limbs. The system is composed of traction motors for each leg position, a treadmill as a walking base, tension sensors, microcontrollers controlling motor functions and a main system with graphic user interface. For derivation of reference or normal velocity profiles of the body segment point, kinematic method is applied based on the humanoid robot model using the reference joint angle data of normal walking.

Keywords: Rehabilitation, lower limb, treadmill, humanoid robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
203 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation

Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun

Abstract:

Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90 and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of an elbow flexion and extension task were investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76% and 0.82% when using muscle relaxation periods of 60, 90 and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity and knowing the optimal resting period will make the automation more effective.

Keywords: Rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
202 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial

Authors: K. Afsahi, M. Soheilifar, S. H. Hosseini, O. S. Esmaeili, R. Kezemi, N. Mehrbod, N. Vahed, T. Hajiahmad, N. N. Ansari

Abstract:

Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.

Keywords: Stroke, virtual therapy, efficacy, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
201 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
200 IntelliCane: A Cane System for Individuals with Lower-Limb Mobility and Functional Impairments

Authors: Adrian Bostan, Nicolae Tapus, Adriana Tapus

Abstract:

The purpose of this research paper is to study and develop a system that is able to help identify problems and improve human rehabilitation after traumatic injuries. Traumatic injuries in human’s lower limbs can occur over a life time and can have serious side effects if they are not treated correctly. In this paper, we developed an intelligent cane (IntelliCane) so as to help individuals in their rehabilitation process and provide feedback to the users. The first stage of the paper involves an analysis of the existing systems on the market and what can be improved. The second stage presents the design of the system. The third part, which is still under development is the validation of the system in real world setups with people in need. This paper presents mainly stages one and two.

Keywords: IntelliCane, 3D printing, microprocessor, weight measurement, rehabilitation tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
199 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
198 Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme

Authors: Bernat-Carles Serdà Ferrer, Arantza Del Valle Gómez

Abstract:

The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients’ QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients’ QoL until their complete recovery in daily life.

Keywords: Prostate cancer, quality of life, rehabilitation programme, response shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
197 Remote Rehabilitation Development Status in China–To Eliminate the Disabled People`s Space Obstacles

Authors: Ning Liu, Jue Wang, Zhe Li

Abstract:

The remote diagnosis and remote medical smoked to part. In China, in accordance with the requirements of different applications of remote diagnosis and Relates to the technical difference, which can be divided into special purpose remote diagnosis and treatment system, the remote will Referral system, remote medical consultation system, remote rehabilitation technology and remote operation technology. In this article, will introduce China for the special purpose of service remote diagnosis and treatment system and technology, including: China disabled status and virtual reality technology; China 's domestic family medical care system and China 's current situation of the development of telemedicine.

Keywords: China, Remote rehabilitation, The disabled people

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
196 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3784
195 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad

Abstract:

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Keywords: Biorobotics, rehabilitation, nonlinear control, robotic assistive device, exoskeleton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660