Search results for: reference trajectory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 948

Search results for: reference trajectory

948 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
947 ZMP Based Reference Generation for Biped Walking Robots

Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven

Abstract:

Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.

Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
946 Trajectory Planning Design Equations and Control of a 4 - axes Stationary Robotic Arm

Authors: T.C. Manjunath,

Abstract:

This paper features the trajectory planning design of a indigenously developed 4-Axis SCARA robot which is used for doing successful robotic manipulation task in the laboratory. Once, a trajectory is being designed and given as input to the robot, the robot's gripper tip moves along that specified trajectory. Trajectories have to be designed in the work space only. The main idea of this paper is to design a continuous path trajectory model for the indigenously developed SCARA robot arm during its maneuvering from one point to another point (during pick and place operations) in a workspace avoiding all the obstacles in its path of motion.

Keywords: SCARA, Trajectory, Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4169
945 Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking

Authors: Toyoyuki Honjo, Takeshi Hayashi, Akinori Nagano, Zhi-Wei Luo

Abstract:

For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot-s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajectory that is close to discontinuous optimal trajectory. In this paper, we proposed the new target trajectory based on a position in the walking direction. We surveyed relations between walking performance and the parameters that form the target trajectory via numerical simulations. As a result, it was found that our target trajectory has the similar characteristics of a parametrically excited inverted pendulum.

Keywords: Dynamic Bipedal Walking, Parametric Excitation, Target Trajectory Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
944 Trajectory Tracking Using Artificial Potential Fields

Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai

Abstract:

In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.

Keywords: Control, Trajectory Tracking, Lyapunov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
943 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: Motion planning, SCARA robot, trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
942 Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider

Authors: Liu Jian-xia, Hou Zhong-xi, Chen Xiao-qing

Abstract:

The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.

Keywords: Aerodynamic, CFD, Thermodynamic, Waverider

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
941 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

Authors: Santhakumar M., Asokan T.

Abstract:

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
940 Design and Trajectory Planning of Bipedal Walking Robot with Minimum Sufficient Actuation System

Authors: H. Siswoyo Jo, N. Mir-Nasiri, E. Jayamani

Abstract:

This paper presents a new type of mechanism and trajectory planning strategy for bipedal walking robot. The newly designed mechanism is able to improve the performance of bipedal walking robot in terms of energy efficiency and weight reduction by utilizing minimum number of actuators. The usage of parallelogram mechanism eliminates the needs of having an extra actuator at the knee joint. This mechanism works together with the joint space trajectory planning in order to realize straight legged walking which cannot be achieved by conventional inverse kinematics trajectory planning due to the singularity. The effectiveness of the proposed strategy is confirmed by computer simulation results.

Keywords: Bipedal robot, Energy efficiency, Straight legged walking, Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
939 Dynamics and Control of Bouncing Ball

Authors: A. K. Kamath, N. M. Singh, R. Pasumarthy

Abstract:

This paper investigates the control of a bouncing ball using Model Predictive Control. Bouncing ball is a benchmark problem for various rhythmic tasks such as juggling, walking, hopping and running. Humans develop intentions which may be perceived as our reference trajectory and tries to track it. The human brain optimizes the control effort needed to track its reference; this forms the central theme for control of bouncing ball in our investigations.

Keywords: Bouncing Ball, impact dynamics, intermittent control, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
938 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Authors: M. Y. Misro, A. Ramli, J. M. Ali

Abstract:

Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use different approach to find the best approximation for the curve so that it will resembles highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first, the Bezier curve estimates the real shape of the curve which can be verified visually. Even though, fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed are acceptable. We verified our result with the manual calculation of the curvature from the map.

Keywords: Speed estimation, path constraints, reference trajectory, Bezier curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3998
937 4D Flight Trajectory Optimization Based on Pseudospectral Methods

Authors: Kouamana Bousson, Paulo Machado

Abstract:

The optimization and control problem for 4D trajectories is a subject rarely addressed in literature. In the 4D navigation problem we define waypoints, for each mission, where the arrival time is specified in each of them. One way to design trajectories for achieving this kind of mission is to use the trajectory optimization concepts. To solve a trajectory optimization problem we can use the indirect or direct methods. The indirect methods are based on maximum principle of Pontryagin, on the other hand, in the direct methods it is necessary to transform into a nonlinear programming problem. We propose an approach based on direct methods with a pseudospectral integration scheme built on Chebyshev polynomials.

Keywords: Pseudospectral Methods, Trajectory Optimization, 4DTrajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
936 Destination Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages Automatic Identification System (AIS) messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring AIS messages. Our RRo method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measures to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Frechet Distance (DFD), Dynamic Time ´ Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an f-measure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: Spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 612
935 Tracking Trajectory of a Cable-Driven Robot for Lower Limb Rehabilitation

Authors: Hachmia Faqihi, Maarouf Saad, Khalid Benjelloun, Mohammed Benbrahim, M. Nabil Kabbaj

Abstract:

This paper investigates and presents a cable-driven robot to lower limb rehabilitation use in sagittal plane. The presented rehabilitation robot is used for a trajectory tracking in joint space. The paper covers kinematic and dynamic analysis, which reveals the tensionability of the used cables as being the actuating source to provide a rehabilitation exercises of the human leg. The desired trajectory is generated to be used in the control system design in joint space. The obtained simulation results is showed to be efficient in this kind of application.

Keywords: Cable-driven multibody system, computed-torque controller, lower limb rehabilitation, tracking trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
934 Trajectory Tracking of a 2-Link Mobile Manipulator Using Sliding Mode Control Method

Authors: Abolfazl Mohammadijoo

Abstract:

In this paper, we are investigating sliding mode control approach for trajectory tracking of a two-link-manipulator with wheeled mobile robot in its base. The main challenge of this work is dynamic interaction between mobile base and manipulator which makes trajectory tracking more difficult than n-link manipulators with fixed base. Another challenging part of this work is to avoid chattering phenomenon of sliding mode control that makes lots of damages for actuators in real industrial cases. The results show the effectiveness of sliding mode control approach for desired trajectory.

Keywords: Mobile manipulator, sliding mode control, dynamic interaction, mobile robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
933 Evaluation of Total Cross Section of Photo-Ionization of Helium in Weak Field on Base of Trajectory Method

Authors: Alexander B. Bichkov, Valery V. Smirnov

Abstract:

Total cross section of helium atom photo-ionization by weak short pulse is calculated using the variant of trajectory method, developed in our earlier work. The method enables simple estimation of total ionization probability (or cross section) without integration of differential one.

Keywords: Evaluation of Photo-Ionization, Helium, Trajectory Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
932 A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Authors: Mohsen A. Bakouri, Andrey V. Savkin, Abdul-Hakeem H. Alomari, Robert F. Salamonsen, Einly Lim, Nigel H. Lovell

Abstract:

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

Keywords: robust control system, discrete-sliding mode, left ventricularle assist devicse, pulsatility index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
931 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, and trajectories. This paper proposes three visual analytics approaches for higher order information of trajectory datasets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical, topological, and directional information. Experimental resultsdemonstrate the applicability and usefulness of proposed three approaches.

Keywords: Visual Analytics, Higher Order Information, Trajectory Datasets, Spatio-temporal data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
930 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: Sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
929 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

Authors: V. K. Banga, R. Kumar, Y. Singh

Abstract:

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
928 A High Precision Temperature Insensitive Current and Voltage Reference Generator

Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung

Abstract:

A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.

Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
927 Trajectory Guided Recognition of Hand Gestures having only Global Motions

Authors: M. K. Bhuyan, P. K. Bora, D. Ghosh

Abstract:

One very interesting field of research in Pattern Recognition that has gained much attention in recent times is Gesture Recognition. In this paper, we consider a form of dynamic hand gestures that are characterized by total movement of the hand (arm) in space. For these types of gestures, the shape of the hand (palm) during gesturing does not bear any significance. In our work, we propose a model-based method for tracking hand motion in space, thereby estimating the hand motion trajectory. We employ the dynamic time warping (DTW) algorithm for time alignment and normalization of spatio-temporal variations that exist among samples belonging to the same gesture class. During training, one template trajectory and one prototype feature vector are generated for every gesture class. Features used in our work include some static and dynamic motion trajectory features. Recognition is accomplished in two stages. In the first stage, all unlikely gesture classes are eliminated by comparing the input gesture trajectory to all the template trajectories. In the next stage, feature vector extracted from the input gesture is compared to all the class prototype feature vectors using a distance classifier. Experimental results demonstrate that our proposed trajectory estimator and classifier is suitable for Human Computer Interaction (HCI) platform.

Keywords: Hand gesture, human computer interaction, key video object plane, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702
926 Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance

Authors: R. Amrollahi, M. Habibi

Abstract:

When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock.

Keywords: Radial compression, Shock wave trajectory, Current sheath, Slog model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
925 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
924 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 407
923 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
922 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
921 An Activity Based Trajectory Search Approach

Authors: Mohamed Mahmoud Hasan, Hoda M. O. Mokhtar

Abstract:

With the gigantic increment in portable applications use and the spread of positioning and location-aware technologies that we are seeing today, new procedures and methodologies for location-based strategies are required. Location recommendation is one of the highly demanded location-aware applications uniquely with the wide accessibility of social network applications that are location-aware including Facebook check-ins, Foursquare, and others. In this paper, we aim to present a new methodology for location recommendation. The proposed approach coordinates customary spatial traits alongside other essential components including shortest distance, and user interests. We also present another idea namely, "activity trajectory" that represents trajectory that fulfills the set of activities that the user is intrigued to do. The approach dispatched acquaints the related distance value to select trajectory(ies) with minimum cost value (distance) and spatial-area to prune unneeded directions. The proposed calculation utilizes the idea of movement direction to prescribe most comparable N-trajectory(ies) that matches the client's required action design with least voyaging separation. To upgrade the execution of the proposed approach, parallel handling is applied through the employment of a MapReduce based approach. Experiments taking into account genuine information sets were built up and tested for assessing the proposed approach. The exhibited tests indicate how the proposed approach beets different strategies giving better precision and run time.

Keywords: Location-based recommendation, map-reduce, recommendation system, trajectory search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
920 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference

Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh

Abstract:

This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
919 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency

Authors: Rania Alshikhe, Vinita Jindal

Abstract:

Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from trav-eling vehicles, such as taxis through installed global positioning sys-tem (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.

Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424