Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: recurrence quantification analysis

2 Bearing Fault Feature Extraction by Recurrence Quantification Analysis

Authors: V. G. Rajesh, M. V. Rajesh

Abstract:

In rotating machinery one of the critical components that is prone to premature failure is the rolling bearing. Consequently, early warning of an imminent bearing failure is much critical to the safety and reliability of any high speed rotating machines. This study is concerned with the application of Recurrence Quantification Analysis (RQA) in fault detection of rolling element bearings in rotating machinery. Based on the results from this study it is reported that the RQA variable, percent determinism, is sensitive to the type of fault investigated and therefore can provide useful information on bearing damage in rolling element bearings.

Keywords: recurrence quantification analysis, Nonlinear time series analysis, Bearing fault detection, machine vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1 Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis

Authors: Christer Ahlstrom, Katja Höglund, Peter Hult, Jens Häggström, Clarence Kvart, Per Ask

Abstract:

It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.

Keywords: Bioacoustics, murmur, phonocardiographic signal, recurrence quantification analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629