**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**7

# Search results for: quantum wire

##### 7 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

**Authors:**
Hoang Van Ngoc,
Nguyen Vu Nhan,
Nguyen Quang Bau

**Abstract:**

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

**Keywords:**
The light-effect,
cylindrical quantum wire with an infinite potential,
the density of the direct current,
electrons - optical phonon scattering.

##### 6 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

**Authors:**
Hoang Van Ngoc,
Nguyen Thu Huong,
Nguyen Quang Bau

**Abstract:**

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

**Keywords:**
Photon-drag effect,
constant current density,
quantum wire,
parabolic potential.

##### 5 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire

**Authors:**
Nguyen Quang Bau,
Nguyen Thu Huong,
Dang Thi Thanh Thuy

**Abstract:**

**Keywords:**
Hall coefficient,
rectangular quantum wires,
electron-optical phonon interaction,
quantum kinetic equation,
confined phonons.

##### 4 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

**Authors:**
N. Q. Bau,
N. V. Nghia

**Abstract:**

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature *T* of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP *GaAs/GaAsAl*. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

**Keywords:**
Rectangular quantum wire,
acoustomagnetoelectric field,
electron-phonon interaction,
kinetic equation method.

##### 3 The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation

**Authors:**
Nguyen Thu Huong,
Nguyen Quang Bau

**Abstract:**

**Keywords:**
Hall coefficient,
rectangular quantum wires,
electron-optical phonon interaction,
quantum kinetic equation.

##### 2 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

**Authors:**
Sara Sedaghat,
Mahmood Barati,
Iraj Kazeminezhad

**Abstract:**

**Keywords:**
quantum well,
quantum wire,
quantum dot,
impuritystate

##### 1 Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

**Authors:**
Mikhail Vladimirovich Deryabin,
Morten Willatzen

**Abstract:**

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

**Keywords:**
cylindrical quantum dots,
electronic eigen energies,
red and white Gaussian noise,
ensemble averaging effects.