Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 391

Search results for: pressure angle

391 Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design

Authors: Ali Raad Hassan

Abstract:

In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed.

Keywords: involute, trochoid, pressure angle, profile shift factor, natural frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
390 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine

Authors: B.R. Singh, O. Singh

Abstract:

Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.

Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
389 Influence of Injection Timing and Injector Opening Pressure on Combustion Performance and P-θ Characteristics of a CI Engine Operating on Jatropha B20 Fuel

Authors: A. B. V. Barboza, Madhwesh N., C.V.Sudhir, N.Yagnesh Sharma

Abstract:

The quest for alternatefuels for a CI engine has become all the more imperative considering its importance in the economy of a nation and from the standpoint of preserving the environment. Reported in this paper are the combustion performance and P-θ characteristics of a CI engine operating on B20 biodiesel fuel derived from Jatropha oil.Itis observed that the twin effect of advancing the injection timing and increasing the injector opening pressure (IOP) up to 220 barhas resulted in minimum brake specific energy consumption and higherpeak pressure. It is also observed that the crank angle of occurrence of peak pressure progressestowards top dead center (TDC) as the timing is advanced and IOP is increased.

Keywords: Crank angle, injector opening pressure, injection timing, peak pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
388 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load

Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri

Abstract:

The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.

Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
387 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube

Authors: Arash Mir Abdolah Lavasani

Abstract:

The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.

Keywords: Pressure Drag, Cam Shaped, Experimental.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
386 Analysis of Endovascular Graft Features Affecting Endotension Following Endovascular Aneurysm Repair

Authors: Zeinab Hooshyar, Alireza Mehdizadeh

Abstract:

Endovascular aneurysm repair is a new and minimally invasive repair for patients with abdominal aortic aneurysm (AAA). This method has potential advantages that are incomparable with other repair methods. However, the enlargement of aneurysm in the absence of endoleak, which is known as endotension, may occur as one of post-operative compliances of this method. Typically, endotension is mainly as a result of pressure transmitted to aneurysm sac by endovascular installed graft. After installation of graft the aneurysm sac reduces significantly but remains non-zero. There are some factors which affect this pressure transmitted. In this study, the geometry features of installed vascular graft have been considered. It is inferred that graft neck angle and iliac bifurcation angle are two factors which can affect the drag force on graft and consequently the pressure transmitted to aneurysm.

Keywords: Endovascular graft, transmitted pressure, Drag force, Finite Element Modeling, neck angle, iliac bifurcation angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
385 The Determination of Cellulose Spiral Angle by Small-Angle X-Ray Scattering from Structurally Characterized Acacia mangium Cell Wall

Authors: Tamer A. Tabet, Fauziah Abdul Aziz, Shahidan Radiman

Abstract:

The spiral angle of the elementary cellulose fibril in the wood cell wall, often called microfibril angle, (MFA). Microfibril angle in hardwood is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage, swelling, thermal-dynamics mechanical properties and dimensional stability of wood. Variation of MFA (degree) in the S2 layer of the cell walls among Acacia mangium trees was determined using small-angle X-ray scattering (SAXS). The length and orientation of the microfibrils of the cell walls in the irradiated volume of the thin samples are measured using SAXS and optical microscope for 3D surface measurement. The undetermined parameters in the analysis are the MFA, (M) and the standard deviation (σФ) of the intensity distribution arising from the wandering of the fibril orientation about the mean value. Nine separate pairs of values are determined for nine different values of the angle of the incidence of the X-ray beam relative to the normal to the radial direction in the sample. The results show good agreement. The curve distribution of scattered intensity for the real cell wall structure is compared with that calculated with that assembly of rectangular cells with the same ratio of transverse to radial cell wall length. It is demonstrated that for β = 45°, the peaks in the curve intensity distribution for the real and the rectangular cells coincide. If this peak position is Ф45, then the MFA can be determined from the relation M = tan-1 (tan Ф45 / cos 45°), which is precise for rectangular cells. It was found that 92.93% of the variation of MFA can be attributed to the distance from pith to bark. Here we shall present our results of the MFA in the cell wall with respect to its shape, structure and the distance from pith to park as an important fast check and yet accurate towards the quality of wood, its uses and application.

Keywords: Small-Angle X-Ray Scattering, Microfibril Angle, MFA, rectangular cell wall and real cell wall, Acacia mangium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
384 CFD of Oscillating Airfoil Pitch Cycle by using PISO Algorithm

Authors: Muhammad Amjad Sohail, Rizwan Ullah

Abstract:

This research paper presents the CFD analysis of oscillating airfoil during pitch cycle. Unsteady subsonic flow is simulated for pitching airfoil at Mach number 0.283 and Reynolds number 3.45 millions. Turbulent effects are also considered for this study by using K-ω SST turbulent model. Two-dimensional unsteady compressible Navier-Stokes code including two-equation turbulence model and PISO pressure velocity coupling is used. Pressure based implicit solver with first order implicit unsteady formulation is used. The simulated pitch cycle results are compared with the available experimental data. The results have a good agreement with the experimental data. Aerodynamic characteristics during pitch cycles have been studied and validated.

Keywords: Angle of attack, Centre of pressure, subsonic flow, pitching moment coefficient, turbulence mode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
383 Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

Authors: W. Paraguassu, S. Guerini, C. M. R. Remédios, P. T. C. Freire

Abstract:

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

Keywords: Dipotassium molybdate, High pressure, Raman scattering, Phase transition, ab initio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
382 Process and Supply-Chain Optimization for Testing and Verification of Formation Tester/Pressure-While- Drilling Tools

Authors: Vivek V, Hafeez Syed, Darren W Terrell, Harit Naik, Halliburton

Abstract:

Applying a rigorous process to optimize the elements of a supply-chain network resulted in reduction of the waiting time for a service provider and customer. Different sources of downtime of hydraulic pressure controller/calibrator (HPC) were causing interruptions in the operations. The process examined all the issues to drive greater efficiencies. The issues included inherent design issues with HPC pump, contamination of the HPC with impurities, and the lead time required for annual calibration in the USA. HPC is used for mandatory testing/verification of formation tester/pressure measurement/logging-while drilling tools by oilfield service providers, including Halliburton. After market study andanalysis, it was concluded that the current HPC model is best suited in the oilfield industry. To use theexisting HPC model effectively, design andcontamination issues were addressed through design and process improvements. An optimum network is proposed after comparing different supply-chain models for calibration lead-time reduction.

Keywords: Hydraulic Pressure Controller/Calibrator, M/LWD, Pressure, FTWD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
381 A Parametric Study on Deoiling Hydrocyclones Flow Field

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
380 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey

Authors: N. Arslanoglu

Abstract:

This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0 to 90 in steps of 1was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0 (June) and 59 (December) throughout the year. In winter (December, January, and February) the tilt should be 55, in spring (March, April, and May) 19.6, in summer (June, July, and August) 5.6, and in autumn (September, October, and November) 44.3. The yearly average of this value was obtained to be 31.1 and this would be the optimum fixed slope throughout the year.

Keywords: Optimum tilt angle, global solar radiation, tilted surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
379 Thermo-mechanical Behavior of Pressure Tube of Indian PHWR at 20 bar Pressure

Authors: Gopal Nandan, P. K. Sahooa, Ravi Kumara, B Chatterjeeb, D. Mukhopadhyayb, H. G. Leleb

Abstract:

In a nuclear reactor Loss of Coolant accident (LOCA) considers wide range of postulated damage or rupture of pipe in the heat transport piping system. In the case of LOCA with/without failure of emergency core cooling system in a Pressurised Heavy water Reactor, the Pressure Tube (PT) temperature could rise significantly due to fuel heat up and gross mismatch of the heat generation and heat removal in the affected channel. The extent and nature of deformation is important from reactor safety point of view. Experimental set-ups have been designed and fabricated to simulate ballooning (radial deformation) of PT for 220 MWe IPHWRs. Experiments have been conducted by covering the CT by ceramic fibers and then by submerging CT in water of voided PTs. In both the experiments, it is observed that ballooning initiates at a temperature around 665´┐¢C and complete contact between PT and Caldaria Tube (CT) occurs at around 700´┐¢C approximately. The strain rate is found to be 0.116% per second. The structural integrity of PT is retained (no breach) for all the experiments. The PT heatup is found to be arrested after the contact between PT and CT, thus establishing moderator acting as an efficient heat sink for IPHWRs.

Keywords: Pressure Tube, Calandria Tube, Thermo-mechanicaldeformation, Boiling heat transfer, Reactor safety

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
378 Characterization of Chemically Modified Biomass as a Coating Material for Controlled Released Urea by Contact Angle Measurement

Authors: Nur Zahirah Zulhaimi, KuZilati KuShaari, Zakaria Man

Abstract:

Controlled release urea has become popular in agricultural industry as it helps to solve environmental issues and increase crop yield. Recently biomass was identified to replace the polymer used as a coating material in the conventional coated urea. In this paper spreading and contact angle of biomass droplet (lignin, cellulose and clay) on urea surface are investigated experimentally. There were two tests were conducted, sessile drop for contact angle measurement and pendant drop for contact angle measurement. A different concentration of biomass droplet was released from 30 mm above a substrate. Glass was used as a controlled substrate. Images were recorded as soon as the droplet impacted onto the urea before completely adsorb into the urea. Digitized droplets were then used to identify the droplet-s surface tension and contact angle. There is large difference observed between the low surface tension and high surface tension liquids, where the wetting and spreading diameter is higher for lower surface tension. From the contact angle results, the data showed that the biomass coating films were possible as wetting liquid (θ < 90º). Contact angle of biomass coating material gives good indication for the wettablity of a liquid on urea surface.

Keywords: Fluid, Dynamics, Droplet, Spreading, Contact Angle, Surface Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
377 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: Additive manufacturing, fused deposition modeling, raster angle, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
376 Experimental and CFD Investigation of Nozzle Angle in Jet Mixer

Authors: Hamid Rafiei, Reza Janamiri, Mohammad Hossein Sedaghat, Amir Hatampour

Abstract:

In this work, the results of mixing study by a jet mixer in a tank have been investigated in the laboratory scale. The tank dimensions are H/D=1 and the jet entrance have been considered in the center of upper surface of tank. RNG-k-ε model is used as the turbulent model for the prediction of the pattern of turbulent flow inside the tank. For this purpose, a tank with volume of 110 liter is simulated and it has been divided into 410,000 tetrahedral control cells for performing the calculations. The grids at the vicinity of the nozzle and suction pare are finer to get more accurate results. The experimental results showed that in a vertical jet, the lowest mixing time takes place at 35 degree. In addition, mixing time decreased by increasing the Reynolds number. Furthermore, the CFD simulation predicted the items as well a flow patterns precisely that validates the experiments.

Keywords: Jet mixer, CFD, Turbulent model, Nozzle angle, Mixing time, Reynolds Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
375 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
374 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: Contact angle, contact angle hysteresis, contact time, superhydrophobic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
373 Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

Authors: Sadeghi H., Mani M., Ardakani M. A.

Abstract:

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Keywords: Unsteady wake, amplitude, mean angle, EPPLER 361 airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
372 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant

Authors: Aziza Benaboud, Alfred Rufer

Abstract:

In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.

Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
371 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.

Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
370 Angle Analyzer of an Encoder using the LabVIEW

Authors: Hyun-Min Kim, Yun-Seok Lim, Hyeok-Jin Yun, Jang-Mok Kim, Hee-je Kim

Abstract:

As we make progressive products for good works, and future industries want to get higher speed and resolution from various developments in the robotics as well as precise control system, the concept of control feedback is getting more important. Within a range of industrial developments, the concept is most responsible for the high reliability of a device. We explain an efficient analyzing method of a rotary encoder such as an incremental type encoder and absolute type encoder using the LabVIEW program

Keywords: LabVIEW, PFI Function, Angle analyzer, Incremental encoder, Absolute encoder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
369 Optimization of Wood Fiber Orientation Angle in Outer Layers of Variable Stiffness Plywood Plate

Authors: J. Sliseris, K. Rocens

Abstract:

The new optimization method for fiber orientation angle optimization of symmetrical multilayer plates like plywood is proposed. Optimization method consists of seeking for minimal compliance by choosing appropriate fiber orientation angle in outer layers of flexural plate. The discrete values of fiber orientation angles are used in method. Optimization results of simply supported plate and multispan plate with uniformly distributed load are provided. Results show that stiffness could be increased up to 20% by changing wood fiber orientation angle in one or two outer layers.

Keywords: Minimal compliance, flexural plate, plywood, discrete fiber angle optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
368 Progressive Strategy of Milling by means of Tool Axis Inclination Angle

Authors: Sadílek M., Čep R.

Abstract:

This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.

Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
367 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
366 Controlling the Angle of Attack of an Aircraft Using Genetic Algorithm Based Flight Controller

Authors: S. Swain, P. S Khuntia

Abstract:

In this paper, the unstable angle of attack of a FOXTROT aircraft is controlled by using Genetic Algorithm based flight controller and the result is compared with the conventional techniques like Tyreus-Luyben (TL), Ziegler-Nichols (ZN) and Interpolation Rule (IR) for tuning the PID controller. In addition, the performance indices like Mean Square Error (MSE), Integral Square Error (ISE), and Integral Absolute Time Error (IATE) etc. are improved by using Genetic Algorithm. It was established that the error by using GA is very less as compared to the conventional techniques thereby improving the performance indices of the dynamic system.

Keywords: Angle of Attack, Genetic Algorithm, Performance Indices, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
365 Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks

Authors: Nima Farkhondeh Jahromi, George Papaefthymiou, Lou van der Sluis

Abstract:

The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.

Keywords: Power systems stability, Renewable energy sources, Stochastic behavior, Small disturbance rotor angle stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
364 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.

Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
363 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model

Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim

Abstract:

A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.

Keywords: Arterial blood pressure, oscillometric method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
362 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings

Authors: Abdurrahim Dal, Tuncay Karaçay

Abstract:

Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.

Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF