Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1058

Search results for: particle separation

1058 Effect of Crude Oil Particle Elasticity on the Separation Efficiency of a Hydrocyclone

Authors: M. H. Narasingha, K. Pana-Suppamassadu, P. Narataruksa

Abstract:

The separation efficiency of a hydrocyclone has extensively been considered on the rigid particle assumption. A collection of experimental studies have demonstrated their discrepancies from the modeling and simulation results. These discrepancies caused by the actual particle elasticity have generally led to a larger amount of energy consumption in the separation process. In this paper, the influence of particle elasticity on the separation efficiency of a hydrocyclone system was investigated through the Finite Element (FE) simulations using crude oil droplets as the elastic particles. A Reitema-s design hydrocyclone with a diameter of 8 mm was employed to investigate the separation mechanism of the crude oil droplets from water. The cut-size diameter eter of the crude oil was 10 - Ðçm in order to fit with the operating range of the adopted hydrocylone model. Typical parameters influencing the performance of hydrocyclone were varied with the feed pressure in the range of 0.3 - 0.6 MPa and feed concentration between 0.05 – 0.1 w%. In the simulation, the Finite Element scheme was applied to investigate the particle-flow interaction occurred in the crude oil system during the process. The interaction of a single oil droplet at the size of 10 - Ðçm to the flow field was observed. The feed concentration fell in the dilute flow regime so the particle-particle interaction was ignored in the study. The results exhibited the higher power requirement for the separation of the elastic particulate system when compared with the rigid particulate system.

Keywords: Hydrocyclone, separation efficiency, strain energy density, strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1057 The Effect of Cyclone Shape and Dust Collector on Gas-Solid Flow and Performance

Authors: Kyoungwoo Park, Chol-Ho Hong, Ji-Won Han, Byeong-Sam Kim, Cha-Sik Park, Oh Kyung Kwon

Abstract:

Numerical analysis of flow characteristics and separation efficiency in a high-efficiency cyclone has been performed. Several models based on the experimental observation for a design purpose were proposed. However, the model is only estimated the cyclone's performance under the limited environments; it is difficult to obtain a general model for all types of cyclones. The purpose of this study is to find out the flow characteristics and separation efficiency numerically. The Reynolds stress model (RSM) was employed instead of a standard k-ε or a k-ω model which was suitable for isotropic turbulence and it could predict the pressure drop and the Rankine vortex very well. For small particles, there were three significant components (entrance of vortex finder, cone, and dust collector) for the particle separation. In the present work, the particle re-entraining phenomenon from the dust collector to the cyclone body was observed after considerable time. This re-entrainment degraded the separation efficiency and was one of the significant factors for the separation efficiency of the cyclone.

Keywords: CFD, High-efficiency cyclone, Pressure drop, Rankine vortex, Reynolds stress model (RSM), Separation efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4473
1056 Modeling of Cross Flow Classifier with Water Injection

Authors: E. Pikushchak, J. Dueck, L. Minkov

Abstract:

In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.

Keywords: Classification, fine particle processing, hydrocyclone, water injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1055 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique

Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama

Abstract:

This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.

Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
1054 Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number

Authors: Aung Myo Thu, Sang Eon Jeon, Yung Hwan Byun, Soo Hyung Park

Abstract:

The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle image velocimetry (PIV) and CFD tools were used and it was found out that dynamic stall separation (DSS), which is separated from leading edge separation (LES) and trailing edge separation (TES), triggered the dynamic stall vortex (DSV).

Keywords: Airfoil Flow, CFD, PIV, Dynamic Stall, Flow Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
1053 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. 

Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570
1052 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong

Abstract:

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

Keywords: Vorsyl separator, separation efficiency, CFD, split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
1051 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting

Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy

Abstract:

In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.

Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS, microfluidics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
1050 A New Particle Filter Inspired by Biological Evolution: Genetic Filter

Authors: S. Park, J. Hwang, K. Rou, E. Kim

Abstract:

In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.

Keywords: Particle filter, genetic algorithm, evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
1049 Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Authors: Pil Woo Heo

Abstract:

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Keywords: Concurrently, variable mixed, exhalations, separation, hollow fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1048 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: Environmental industry, Separator, CFD, Fine aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1047 Study of Cahn-Hilliard Equation to Simulate Phase Separation

Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa

Abstract:

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
1046 Immobilized Liquid Membrane for Propylene- Propane Separation

Authors: Maryam TakhtRavanchi, Tahereh Kaghazchi, Ali Kargari

Abstract:

Separation of propylene-propane mixture using immobilized liquid membrane was investigated. The effect of transmembrane pressure and carrier concentration on membrane separation performance was studied. It was observed that for 30:70 (vol. %) propylene-propane mixture, at pressure of 120kPa and carrier concentration of 20wt. %, a separation factor of 474 was obtained.

Keywords: Facilitated Transport, Immobilized Liquid Membrane, Propylene-Propane Separation, Silver Nitrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1045 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage

Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao

Abstract:

Particles exhausted from cars have adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.

Keywords: Dispersion, Idling conditions, Particle concentration, Residential underground garage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1044 Flow Visualization and Characterization of an Artery Model with Stenosis

Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson

Abstract:

Cardiovascular diseases, principally atherosclerosis, are responsible for 30% of world deaths. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis.It is increasingly recognized that the initiation and progression of disease and the occurrence of clinical events is a complex interplay between the local biomechanical environment and the local vascular biology. The aim of this study is to investigate the flow behavior through a stenosed artery. A physical experiment was performed using an artery model and blood analogue fluid. An axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. The flow field was measured using particle image velocimetry (PIV). Spherical particles with 20μm diameter were seeded in a water-glycerol-NaCl mixture. Steady flow Reynolds numbers are 250. The area of interest is the region after the stenosis where the flow separation occurs. The velocity field was measured and the velocity gradient was investigated. There was high particle concentration in the recirculation zone. High velocity gradient formed immediately after the stenosis throat created a lift force that enhanced particle migration to the flow separation area.

Keywords: Stenosis artery, Biofluid mechanics, PIV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1043 Application of Formal Methods for Designing a Separation Kernel for Embedded Systems

Authors: Kei Kawamorita, Ryouta Kasahara, Yuuki Mochizuki, Kenichiro Noguchi

Abstract:

A separation-kernel-based operating system (OS) has been designed for use in secure embedded systems by applying formal methods to the design of the separation-kernel part. The separation kernel is a small OS kernel that provides an abstract distributed environment on a single CPU. The design of the separation kernel was verified using two formal methods, the B method and the Spin model checker. A newly designed semi-formal method, the extended state transition method, was also applied. An OS comprising the separation-kernel part and additional OS services on top of the separation kernel was prototyped on the Intel IA-32 architecture. Developing and testing of a prototype embedded application, a point-of-sale application, on the prototype OS demonstrated that the proposed architecture and the use of formal methods to design its kernel part are effective for achieving a secure embedded system having a high-assurance separation kernel.

Keywords: B method, embedded systems, extended state transition, formal methods, separation kernel, Spin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
1042 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-Car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: Quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103
1041 Design of Laboratory Pilot Reactor for Filtering and Separation of Water – oil Emulsions

Authors: Irena Markovska, Nikolai Zaicev, Bogdan Bogdanov, Dimitar Georgiev, Yancho Hristov

Abstract:

The present paper deals with problems related to the possibilities to use fractal systems to solve some important scientific and practical problems connected with filtering and separation of aqueous phases from organic ones. For this purpose a special separator have been designed. The reactor was filled with a porous material with fractal dimension, which is an integral part of the set for filtration and separation of emulsions. As a model emulsion hexadecan mixture with water in equal quantities (1:1) was used. We examined the hydrodynamics of the separation of the emulsion at different rates of submission of the entrance of the reactor.

Keywords: pilot reactor, fractal systems, separation, emulsions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1040 The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Authors: Mee-Lin Lim Chai Teo, Darryl M. Small

Abstract:

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (<10μm, >10μm and original) were digested with a-amylase using a dialysis model. Granules of <10μm showed significantly higher rate of reducing sugar release than those >10μm (p<0.05). In contrast, the rate was not significantly different between the original sample and granules >10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Keywords: in vitro Digestion, a-amylase, wheat starch, granule size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
1039 Absorption Center of Photophoresis with in Micro-Sized and Spheroidal Particles in a Gaseous Medium

Authors: Wen-Ken Li, Pei-Yuan Tzeng, Chyi-Yeou Soong, Chung-Ho Liu

Abstract:

The present study is concerned with the absorption center of photophoresis within a micro-sized and spheroidal particle in a gaseous medium. A particle subjected to an intense light beam can absorb electromagnetic energy within the particle unevenly, which results in photophoretic force to drive the particle in motion. By evaluating the energy distribution systematically at various conditions, the study focuses on the effects of governing parameters, such as particle aspect ratio, size parameter, refractivity, and absorptivity, on the heat source function within the particle and their potential influences to the photophoresis.

Keywords: photophoresis, spheroidal particle, aspect ratio, refractivity, absorptivity, heat source function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
1038 Blind Source Separation Using Modified Gaussian FastICA

Authors: V. K. Ananthashayana, Jyothirmayi M.

Abstract:

This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.

Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
1037 Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Yongzheng Li, Hongfang Ma, Qiwen Sun, Haitao Zhang, Weiyong Ying

Abstract:

Radial profiles of particle velocities were investigated in a 6.1m high methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The effect of axial height on flow development was not obvious in fully developed region under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons among rising, descending and average particle velocity were conducted. The particle average velocity was similar to the rising particle velocity and higher than the descending particle velocity in radial locations except the wall region of riser.

Keywords: Circulating fluidized bed, laser doppler velocimeter, particle velocity, radial profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1036 Separation of Dissolved Gases from Water for a Portable Underwater Breathing

Authors: Pil Woo Heo, In Sub Park

Abstract:

Water contains oxygen which may make a human breathe under water like a fish. Centrifugal separator can separate dissolved gases from water. Carrier solution can increase the separation of dissolved oxygen from water. But, to develop an breathing device for a human under water, the enhancement of separation of dissolved gases including oxygen and portable devices which have dc battery based device and proper size are needed. In this study, we set up experimental device for analyzing separation characteristics of dissolved gases including oxygen from water using a battery based portable vacuum pump. We characterized vacuum state, flow rate of separation of dissolved gases and oxygen concentration which were influenced by the manufactured vacuum pump.

Keywords: Portable, breathing, water, separation, battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
1035 Particle Swarm Optimization with Reduction for Global Optimization Problems

Authors: Michiharu Maeda, Shinya Tsuda

Abstract:

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.

Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1034 Self Organizing Analysis Platform for Wear Particle

Authors: Qurban A. Memon, Mohammad S. Laghari

Abstract:

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Keywords: Neural Network, Relationship Measurement, Selforganizing Clusters, Wear Particle Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
1033 Simulation of Particle Damping under Centrifugal Loads

Authors: Riaz A. Bhatti, Wang Yanrong

Abstract:

Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.

Keywords: Impact damping, particle damping, vibration control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
1032 Flow Visualization of Angled Supersonic Jets into a Supersonic Cross Flow

Authors: Yan Shao, Jin Zhou, Lin Lai, Haiyan Wu, Jing Lei

Abstract:

This paper describes Nano-particle based Planar Laser Scattering (NPLS) flow visualization of angled supersonic jets into a supersonic cross flow based on the HYpersonic Low TEmperature (HYLTE) nozzle which was widely used in DF chemical laser. In order to investigate the non-reacting flowfield in the HYLTE nozzle, a testing section with windows was designed and manufactured. The impact of secondary fluids orifice separation on mixing was examined. For narrow separation of orifices, the secondary fuel penetration increased obviously compared to diluent injection, which means smaller separation of diluent and fuel orifices would enhance the mixing of fuel and oxidant. Secondary injections with angles of 30, 40 and 50 degrees were studied. It was found that the injectant penetration increased as the injection angle increased, while the interfacial surface area to entrain the freestream fluid is largest when the injection angle is 40 degree.

Keywords: HYLTE nozzle, NPLS, supersonic mixing, transverse injection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1031 Dependence of Particle Initiated PD Characteristics on Size and Position of Metallic Particle Adhering to the Spacer Surface in GIS

Authors: F. N. Budiman, Y. Khan, A. A. Khan, A. Beroual, N. H. Malik, A. A. Al-Arainy

Abstract:

It is well known that metallic particles reduce the reliability of Gas-Insulated Substation (GIS) equipments by initiating partial discharge (PDs) that can lead to breakdown and complete failure of GIS. This paper investigates the characteristics of PDs caused by metallic particle adhering to the solid spacer. The PD detection and measurement were carried out by using IEC 60270 method with particles of different sizes and at different positions on the spacer surface. The results show that a particle of certain size at certain position possesses a unique PD characteristic as compared to those caused by particles of different sizes and/or at different positions. Therefore PD characteristics may be useful for the particle size and position identification.

Keywords: Particle, partial discharge, GIS, spacer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1030 Effect of Particle Gravity on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation

Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski

Abstract:

In this study, the dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. The fractal dimension of the line is found in the case of different particle gravity (in practice, different values of particle drift velocity) in the presence of small particle inertia with a comparison with that obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle gravity affect the fractal dimension of the line for different particle gravity velocities in the range 0.2 < W < 2. With the increase of the particle drift velocity, the fractal dimension of the line decreases which may be explained as the particles pass many scales in their journey in the direction of the gravity and the particles trajectories do not affect by these scales at high particle drift velocities.

Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
1029 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture

Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain

Abstract:

Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.

Keywords: Oil-spill, graphene, oil-water separation, nanocomposite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754