Search results for: obstacle feeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 164

Search results for: obstacle feeling

164 Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin, M. N. M. Zubir

Abstract:

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.

Keywords: Separation flow, Backward facing step, Heat transfer, Laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4261
163 Obstacle Classification Method Based On 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

We propose obstacle classification method based on 2D LIDAR Database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width and intensity data; the first classification was processed by the width data; the second classification was processed by the intensity data; classification was processed by comparing to database; result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.

Keywords: Obstacle, Classification, LIDAR, Segmentation, Width, Intensity, Database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
162 Trial Development the Evaluation Method of Quantification the Feeling of Preventing Visibility by Front A Pillar

Authors: T. Arakawa, H. Sato

Abstract:

There are many drivers who feel right A pillar of Japanese right-hand-drive car preventing visibility on turning right or left at intersection. On the other hand, there is a report that almost pedestrian accident is caused by the delay of finding pedestrian by drivers and this is found by drivers’ eye movement. Thus, we developed the evaluation method of quantification using drivers’ eye movement data by least squares estimation and we applied this method to commercial vehicle and evaluation the visibility. It is suggested that visibility of vehicle can be quantified and estimated by linear model obtained from experimental eye fixation data and information of vehicle dimensions.

Keywords: Eye fixation, modeling, obstacle feeling, right A pillar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
161 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: Experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
160 Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: Autonomous driving, Obstacle avoidance, Optimal control, Path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
159 A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm

Authors: Jae Kyung Son, Wan Shik Jang, Sung hyun Shim, Yoon Gyung Sung

Abstract:

This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Keywords: Vision control algorithm, location of obstacle region, range of obstacle region, point placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
158 Model of Obstacle Avoidance on Hard Disk Drive Manufacturing with Distance Constraint

Authors: Rawinun Praserttaweelap, Somyot Kiatwanidvilai

Abstract:

Obstacle avoidance is the one key for the robot system in unknown environment. The robots should be able to know their position and safety region. This research starts on the path planning which are SLAM and AMCL in ROS system. In addition, the best parameters of the obstacle avoidance function are required. In situation on Hard Disk Drive Manufacturing, the distance between robots and obstacles are very serious due to the manufacturing constraint. The simulations are accomplished by the SLAM and AMCL with adaptive velocity and safety region calculation.

Keywords: Obstacle avoidance, simultaneous localization and mapping, adaptive Monte Carlo localization, KLD sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424
157 Adaptive Path Planning for Mobile Robot Obstacle Avoidance

Authors: Rong-Jong Wai, Chia-Ming Liu

Abstract:

Generally speaking, the mobile robot is capable of sensing its surrounding environment, interpreting the sensed information to obtain the knowledge of its location and the environment, planning a real-time trajectory to reach the object. In this process, the issue of obstacle avoidance is a fundamental topic to be challenged. Thus, an adaptive path-planning control scheme is designed without detailed environmental information, large memory size and heavy computation burden in this study for the obstacle avoidance of a mobile robot. In this scheme, the robot can gradually approach its object according to the motion tracking mode, obstacle avoidance mode, self-rotation mode, and robot state selection. The effectiveness of the proposed adaptive path-planning control scheme is verified by numerical simulations of a differential-driving mobile robot under the possible occurrence of obstacle shapes.

Keywords: Adaptive Path Planning, Mobile Robot ObstacleAvoidance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
156 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S

Authors: Mohammad Javad Mollakazemi, Farhad Asadi

Abstract:

In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.

Keywords: Limit cycles, Nonlinear dynamical system, Real time obstacle avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
155 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments

Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo

Abstract:

In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.

Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
154 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
153 Non-Polynomial Spline Solution of Fourth-Order Obstacle Boundary-Value Problems

Authors: Jalil Rashidinia, Reza Jalilian

Abstract:

In this paper we use quintic non-polynomial spline functions to develop numerical methods for approximation to the solution of a system of fourth-order boundaryvalue problems associated with obstacle, unilateral and contact problems. The convergence analysis of the methods has been discussed and shown that the given approximations are better than collocation and finite difference methods. Numerical examples are presented to illustrate the applications of these methods, and to compare the computed results with other known methods.

Keywords: Quintic non-polynomial spline, Boundary formula, Convergence, Obstacle problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
152 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson

Abstract:

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6981
151 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
150 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
149 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: Free-surface wave, inviscid fluid, analytical solution, hydraulic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
148 The Relationship between the Feeling of Distributive Justice and National Identity of the Youth

Authors: Leila Batmany

Abstract:

This research studies the relationship between the feeling of distributive justice and national identity of the youth. The present analysis intends to experimentally investigate the various dimensions of the justice feeling and its effect on the national identity components. The study has taken justice into consideration from four different points of view on the basis of availability of valuable social sources such as power, wealth, knowledge and status in the political, economic, and cultural and status justice respectively. Furthermore, the national identity has been considered as the feeling of honour, attachment and commitment towards national society and its seven components i.e. history, language, culture, political system, religion, geographical territory and society. The 'field study' has been used as the method for the research with the individual as unit, taking 368 young between the age of 18 and 29 living in Tehran, chosen randomly according to Cochran formula. The individual samples have been randomly chosen among five districts in north, south, west, east, and centre of Tehran, based on the multistage cluster sampling. The data collection has been performed with the use of questionnaire and interview. The most important results are as follows: i) The feeling of economic justice is the weakest one among the youth. ii) The strongest and the weakest dimensions of the national identity are, respectively, the historical and the social dimension. iii) There is a positive and meaningful relationship between the feeling political and statues justice and then national identity, whereas no meaningful relationship exists between the economic and cultural justice and the national identity. iv) There is a positive and meaningful relationship between the feeling of justice in all dimensions and legitimacy of the political system. There is also such a relationship between the legitimacy of the political system and national identity. v) Generally, there is a positive and meaningful relationship between the feeling of distributive justice and national identity among the youth. vi) It is through the legitimacy of the political system that justice feeling can have an influence on the national identity.

Keywords: Distributive justice, national identity, legitimacy of political system, Cochran formula, multistage cluster sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
147 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887
146 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

 

Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
145 An Efficient Obstacle Detection Algorithm Using Colour and Texture

Authors: Chau Nguyen Viet, Ian Marshall

Abstract:

This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.

Keywords: Colour, texture, classification, obstacle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
144 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace

Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai

Abstract:

In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.

Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
143 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique

Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem

Abstract:

This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.

Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
142 Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines

Authors: Poramate Manoonpong, Frank Pasemann, Florentin Wörgötter

Abstract:

This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional walking. As a result, through a sensorimotor loop this reactive neural controller enables the machines to explore a dynamic environment by avoiding obstacles, turn toward a light source, and then stop near to it.

Keywords: Recurrent neural networks, Walking robots, Modular neural control, Phototaxis, Obstacle avoidance behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
141 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
140 Sliding Mode Based Behavior Control

Authors: Selim Yannier, Asif Sabanovic, Ahmet Onat, Muhammet Bastan

Abstract:

In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.

Keywords: Autonomous Mobile Robot, Behavior Based Control, Fast Local Obstacle Avoidance, Sliding Mode Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
139 Obstacles as Switches between Different Cardiac Arrhythmias

Authors: Daniel Olmos-Liceaga

Abstract:

Ventricular fibrillation is a very important health problem as is the cause of most of the sudden deaths in the world. Waves of electrical activity are sent by the SA node, propagate through the cardiac tissue and activate the mechanisms of cell contraction, and therefore are responsible to pump blood to the body harmonically. A spiral wave is an abnormal auto sustainable wave that is responsible of certain types of arrhythmias. When these waves break up, give rise to the fibrillation regime, in which there is a complete loss in the coordination of the contraction of the heart muscle. Interaction of spiral waves and obstacles is also of great importance as it is believed that the attachment of a spiral wave to an obstacle can provide with a transition of two different arrhythmias. An obstacle can be partially excitable or non excitable. In this talk, we present a numerical study of the interaction of meandering spiral waves with partially and non excitable obstacles and focus on the problem where the obstacle plays a fundamental role in the switch between different spiral regimes, which represent different arrhythmic regimes. Particularly, we study the phenomenon of destabilization of spiral waves due to the presence of obstacles, a phenomenon not completely understood (This work will appear as a Chapter in a Book named Cardiac Arrhytmias by INTECH under the name "Spiral Waves, Obstacles and Cardiac Arrhythmias", ISBN 979-953-307-050-5.).

Keywords: Arrhythmias, Cardiac tissue, Obstacles, Spiral waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
138 Contribution to Experiments of a Free Surface Supercritical Flow over an Uneven Bottom

Authors: M. Bougamouza, M. Bouhadef, T. Zitoun

Abstract:

The aim of this study is to examine, through experimentation in the laboratory, the supercritical flow in the presence of an obstacle in a rectangular channel. The supercritical regime in the whole hydraulic channel is achieved by adding a convergent. We will observe the influence of the obstacle shape and dimension on the characteristics of the supercritical flow, mainly the free-surface elevation and the velocity profile. The velocity measurements have been conducted with the one dimension laser anemometry technique.

Keywords: Experiments, free-surface flow, hydraulic channel, uneven bottom, laser anemometry, supercritical regime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
137 Linguistic Phenomena in Men and Women - TOT, FOK, Verbal Fluency

Authors: Ewa Szepietowska, Barbara Gawda, Agnieszka Gawda

Abstract:

The aim of this study is to describe the differences between women and men in the phenomena of feeling of knowing/know (FOK), tip of the tongue (TOT), and verbal fluency. Two studies are presented. The first included a group of 60 participants and focused on the analysis of FOK and TOT in men and women. The second study described the performance of 302 participants in verbal fluency tasks. Both studies showed that sex is not a significant predictor of linguistic abilities. Rather, the main factors influencing one’s linguistic ability were Vocabulary and education. This study enriches the knowledge on mechanisms of memory and verbal production.

Keywords: Feeling of knowing, Tip of the tongue, Verbal fluency, Sex differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
136 Influences on Occupational Identity through Trans and Gender Diverse Identity: A Qualitative Study about Work Experiences of Trans and Gender Diverse Individuals

Authors: Robin C. Ladwig

Abstract:

Work experiences and satisfaction as well as the feeling of belonging has been narrowly explored from the perspective of trans and gender diverse individuals. Hence, the study investigates the relationship of values, attitudes, and norms of occupational environments and the working identity of trans and gender diverse people of the Australian workforce. Based on 22 semi-structured interviews with trans and gender diverse individuals regarding their work and career experiences, a first insight about their feeling of belonging through commonality in the workplace could be established. Communality between the values, attitudes and norms of a trans and gender diverse individuals working identities and profession, organization and working environment could increase the feeling of belonging. Further reflection and evaluation of trans and gender diverse identities in the workplace need to be considered to create an equitable and inclusive workplace of the future. Consequently, an essential development step for the future of work and its fundamental values of diversity, inclusion, and belonging will consist of the acknowledgement and inclusion of trans and gender diverse people as part of a broader social identity of the workplace.

Keywords: Belonging, future of work, working identity, trans and gender diverse identity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
135 The Relationship between Land Use Factors and Feeling of Happiness at the Neighbourhood Level

Authors: M. Moeinaddini, Z. Asadi-Shekari, Z. Sultan, M. Zaly Shah

Abstract:

Happiness can be related to everything that can provide a feeling of satisfaction or pleasure. This study tries to consider the relationship between land use factors and feeling of happiness at the neighbourhood level. Land use variables (beautiful and attractive neighbourhood design, availability and quality of shopping centres, sufficient recreational spaces and facilities, and sufficient daily service centres) are used as independent variables and the happiness score is used as the dependent variable in this study. In addition to the land use variables, socio-economic factors (gender, race, marital status, employment status, education, and income) are also considered as independent variables. This study uses the Oxford happiness questionnaire to estimate happiness score of more than 300 people living in six neighbourhoods. The neighbourhoods are selected randomly from Skudai neighbourhoods in Johor, Malaysia. The land use data were obtained by adding related questions to the Oxford happiness questionnaire. The strength of the relationship in this study is found using generalised linear modelling (GLM). The findings of this research indicate that increase in happiness feeling is correlated with an increasing income, more beautiful and attractive neighbourhood design, sufficient shopping centres, recreational spaces, and daily service centres. The results show that all land use factors in this study have significant relationship with happiness but only income, among socio-economic factors, can affect happiness significantly. Therefore, land use factors can affect happiness in Skudai more than socio-economic factors.

Keywords: Neighbourhood land use, neighbourhood design, happiness, socio-economic factors, generalised linear modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665