Search results for: natural rubber (NR) latex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1622

Search results for: natural rubber (NR) latex

1622 The Potential of Strain M Protease in Degradations of Protein in Natural Rubber Latex

Authors: Norlin Pauzi, Ahmad R.M. Yahya, Zairossani Nor, Amirul A. Abdullah

Abstract:

Strain M was isolated from the latex of Hevea brasiliensis that grow in the rubber farm area of Malaysia Rubber Board. Strain M was tentatively identified as Bacillus sp. Strain M demonstrated high protease production at pH 9, and this was suitable to be applied in rubber processing that was in alkaline conditions. The right and suitable proportion to be used in applying supernatant into the latex was two parts of latex and one part of enzyme. In this proportion, the latex was stable throughout the 72 hours of treatment. The potential of strain M to degrade protein in the natural rubber latex was proven with the reduction of 79.3% nitrogen in 24 hours treatment. Centrifugation process of the latex before undergoing the treatment had increased the protein degradation in latex. Although the centrifugation process did not achieve zero nitrogen content, it had improved the performance of protein denaturing in the natural rubber.

Keywords: Hevea brasiliensis, Bacillus sp., protease, latex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
1621 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

Authors: Apusraporn Prompunjai, Waranyou Sridach

Abstract:

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4041
1620 Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment

Authors: K. Kuntanoo, S. Promkotra, P. Kaewkannetra

Abstract:

According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.

Keywords: Biodegradation, polyhydroxyalkanoates (PHAs), Polyhydroxybutyrate-co-hydroxyvalerate (PHBV), natural rubber (NR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
1619 Polyisoprene-coated Silica/Natural Rubber Composite

Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon

Abstract:

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.

Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
1618 Antimicrobial Activity and Phytochemicals Screening of Jojoba (Simmondsia chinensis) Root Extracts and Latex

Authors: Ferial M. Abu-Salem, Hayam M. Ibrahim

Abstract:

Plants are rich sources of bioactive compounds. In this study the photochemical screening of hexane, ethanolic and aqueous extracts of roots and latex of jojoba (Simmondsia chinensis) plant revealed the presence of saponins, tannins, alkaloids, steroids and glycosides. Ethanolic extract was found to be richer in these metabolites than hexane, aqueous extracts and latex. The extracts and latex displayed effective antimicrobial activity against Salmonella typhimurium, Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus flavus. The increase in volume of the extracts and latex caused more activity, as shown by zones of inhibition. Candida albicans growth was inhibited only by hexane extract. Jojoba latex was not effective against Candida albicans at 0.1 and 0.5 ml extracts concentration but showed 5mm zone of inhibition at (1.0 ml). Lower volume (0.1ml) of latex encouraged Aspergillus flavus growth, while at (1.00 ml) reduced its mycelial growth. Thus, jojoba root extracts and latex can be of potential natural antimicrobial agents.

Keywords: Antimicrobial activity, Jojoba (Simmondsia chinensis), latex, photochemical, root Extracts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
1617 Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber

Authors: Su Yi Ming, Hou Ying, Zou Guang Ping

Abstract:

Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves.

Keywords: Metal-net rubber vibration isolator, relative density, vibration level, wire diameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1616 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines

Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew

Abstract:

Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.

Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
1615 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uniaxial tension equibiaxial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.

Keywords: Chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
1614 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material

Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim

Abstract:

Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.

Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4599
1613 Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Authors: Adilah Shariff, Radin Hakim, Nurhayati Abdullah

Abstract:

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Keywords: Biochar, biomass, rubber wood, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
1612 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips

Authors: R. Ziaie Moayed, M. Hamidzadeh

Abstract:

The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.

Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
1611 Cellulolytic Microbial Activator Influence on Decomposition of Rubber Factory Waste Composting

Authors: Thaniya Kaosol, Sirinthrar Wandee

Abstract:

In this research, an aerobic composting method is studied to reuse organic waste from rubber factory waste as soil fertilizer and to study the effect of cellulolytic microbial activator (CMA) as the activator in the rubber factory waste composting. The performance of the composting process was monitored as a function of carbon and organic matter decomposition rate, temperature and moisture content. The results indicate that the rubber factory waste is best composted with water hyacinth and sludge than composted alone. In addition, the CMA is more affective when mixed with the rubber factory waste, water hyacinth and sludge since a good fertilizer is achieved. When adding CMA into the rubber factory waste composted alone, the finished product does not achieve a standard of fertilizer, especially the C/N ratio. Finally, the finished products of composting rubber factory waste and water hyacinth and sludge (both CMA and without CMA), can be an environmental friendly alternative to solve the disposal problems of rubber factory waste. Since the C/N ratio, pH, moisture content, temperature, and nutrients of the finished products are acceptable for agriculture use.

Keywords: composting, rubber waste, C/N ratio, sludge, cellulolytic microbial activator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
1610 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
1609 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyres waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of crumb rubber in clay roof tiles. The properties of roof tiles composed of clay, crumb rubber, NaOH, and Na2SiO3 with 10 wt.% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50 °C for 72 hours, followed by a higher heating temperature of 200 °C for 24 hours. The effect of crumb rubber aggregates as a substitution for the raw clay materials were investigated by varying their concentration from 0 wt.% to 2.5 wt.%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5 wt.% and 1 wt.%, while cracks and larger porosity were found at higher crumbs concentration. Water absorption, and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: Crumb rubber, clay, roof tiles, alkaline activators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87
1608 A Study on Mechanical Properties of Fiberboard Made of Durian Rind through Latex with Phenolic Resin as Binding Agent

Authors: W. Wiyaratn, A. Watanapa

Abstract:

This study was aimed to study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. The durian rind underwent the boiling process with NaOH [7], [8] and then the fiber from durian rind was formed into fiberboard through heat press. This means that durian rind could be used as replacement for plywood in plywood industry by using durian fiber as composite material with adhesive substance. This research would study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. At first, durian rind was split, exposed to light, boiled and steamed in order to gain durian fiber. Then, fiberboard was tested with the density of 600 Kg/m3 and 800 Kg/m3. in order to find a suitable ratio of durian fiber and latex. Afterwards, mechanical properties were tested according to the standards of ASTM and JIS A5905-1994. After the suitable ratio was known, the test results would be compared with medium density fiberboard (MDF) and other related research studies. According to the results, fiberboard made of durian rind through latex with phenolic resin at the density of 800 Kg/m3 at ratio of 1:1, the moisture was measured to be 5.05% with specific gravity (ASTM D 2395-07a) of 0.81, density (JIS A 5905-1994) of 0.88 g/m3, tensile strength, hardness (ASTM D2240), flexibility or elongation at break yielded similar values as the ones by medium density fiberboard (MDF).

Keywords: Durian rind, latex, phenolic resin, medium density fiberboard

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3851
1607 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate a FEM model which is accurate and competitive for a future shape optimization task.

Keywords: Rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3531
1606 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite

Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez

Abstract:

This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.

Keywords: Chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
1605 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems

Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.

Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
1604 Dry Sliding Wear Behavior of Epoxy-Rubber Dust Composites

Authors: Antaryami Mishra

Abstract:

Composite pins of rubber dust collected from tyre retreading centres of trucks, cars and buses etc.and epoxy with weight percentages of 10. 15, and 20 % of rubber (weight fractions of 9, 13 and 17 % respectively) have been prepared in house with the help of a split wooden mould. The pins were tested in a pin-on-disc wear monitor to determine the co-efficient of friction and weight losses with varying speeds, loads and time. The wear volume and wear rates have also been found out for all these three specimens.. It is observed that all the specimens have exhibited very low coefficient of friction and low wear rates under dry sliding condition. Out of the above three samples tested, the specimen with 10 % rubber dust by weight has shown lowest wear rates. However a peculiar result i.e decreasing trend has been obtained with 20% reinforcement of rubber in epoxy while rubbed against steel at varying speeds. This might have occurred due to high surface finish of the disc and formation of a thin transfer layer from the composite

Keywords: epoxy, rubber dust, composites, weight fractions, pin-on-disc wear tests, wear volume and wear rate calculations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
1603 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications

Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage

Abstract:

Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.

Keywords: Thermoplastic elastomer, natural rubber, high density polyethylene, roofing material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
1602 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu

Abstract:

Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.

Keywords: Textile reinforced composite, cement, fine grained concrete, latex, redispersible powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
1601 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete

Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević

Abstract:

This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.

Keywords: Compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
1600 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: Bonded rubber, quasi-static test, shape factor, apparent Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
1599 An Experimental and Numerical Investigation of Press Force and Weld Line Displacement of Tailor Welded Blanks in Conventional and Rubber Pad Sheet Metal Forming

Authors: Amir Ansari, Ehsan Shahrjerdi, Ehsan Amini

Abstract:

To investigate the behavior of sheet metals during forming tailor welded blanks (TWB) of various thickness made via Co2 Laser welding are under consideration. These blanks are formed used two different forming methods of rubber as well as the conventional punch and die methods. The main research objective is the effects of using a rubber die instead of a solid one the displacement of the weld line and the press force needed for forming. Specimens with thicknesses of 0.5, 0.6, 0.8 and 1mm are subjected to Erichsen two dimensional tests and the resulted force for each case are compared. This is followed by a theoretical and numerical study of press force and weld line displacement. It is concluded that using rubber pad forming (RPF) causes a reduction in weld line displacement and an increase in the press force.

Keywords: Rubber pad forming, Tailor welded blank, Thickness ratio, Weld line displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1598 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Shunya Wakayama, Kazuya Okubo, Toru Fujii, Daisuke Sakata, Noriyuki Kado, Hiroshi Furutachi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient between shoe rubber soles with added glass fibers and the surfaces of icy and snowy road in order to prevent slip-and-fall accidents by the users. The additional fibers into the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angles were -60, -30, +30, +60, 90 degrees and 0 (as normal specimen), respectively. It was found that parallel arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while perpendicular to normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at critical frictional state and adequate scratching of fibers when fibers were protruded in perpendicular to frictional direction, respectively. Most effective angle of tilting of frictional coefficient between rubber specimens and a stone was perpendicular (= 0 degree) to frictional direction. Combinative modified rubber specimen having 2 layers was fabricated where tilting angle of protruded fibers was 0 degree near the contact surface and tilting angle of embedded fibers was 90 degrees near back surface in thickness direction to further improve the frictional coefficient. Current study suggested that effective arraignments in tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for users in regions of cold climates.

Keywords: Frictional coefficient, icy and snowy road, shoe rubber soles, tilting angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1597 Reaction to the Fire of a Composite Material the Base of Scrapes of Tires End Latex for Thermal Isolation

Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, R. M. Nascimento

Abstract:

The great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made of materials aggressive nature, such an as glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the Latex, based in the "con" experiment in agreement with the norm ASTM - E 1334 - 90. As consequence, in function of the answers of the system was possible to be observed to the acting of each mixture proportion.

Keywords: Composite, Latex, Reaction to the fire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
1596 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation

Authors: H. Al-Baghli

Abstract:

Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.

Keywords: Crumb rubber, Marshall mix design, PG grading, rubberized-bitumen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
1595 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks

Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan

Abstract:

In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.

Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
1594 Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I

Authors: S. Bangphan, P. Bangphan, T.Boonkang

Abstract:

Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.

Keywords: Brown rice, Response surface methodology(RSM), Rubber clearance, Round per minute (RPM), Peeling machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
1593 Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test

Authors: J. Grasaesom, S.Thong-om, W. Payakcho, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.

Keywords: ageing of silicone rubber, salt water dip wheeltest, silicone rubber polymer insulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580