Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1400

Search results for: molecular dynamics simulation

1400 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behavior.

Keywords: Seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1399 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

Authors: Babak Safaei, A. M. Fattahi

Abstract:

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1398 Coding Considerations for Standalone Molecular Dynamics Simulations of Atomistic Structures

Authors: R. O. Ocaya, J. J. Terblans

Abstract:

The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.

Keywords: C-language, molecular dynamics, simulation, embedded atom method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1397 The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Siface)4H-SiC, through Molecular Dynamics Simulation

Authors: Srikanta Bose, Sudip K. Mazumder

Abstract:

We report here, the results of molecular dynamics simulation of p-doped (Ga-face)GaN over n-doped (Siface)( 0001)4H-SiC hetero-epitaxial material system with one-layer each of Ga-flux and (Al-face)AlN, as the interface materials, in the form of, the total Density of States (DOS). It is found that the total DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and ndoped (Si-face)4H-SiC hetero-epitaxial system, with one layer of (Al-face)AlN as the interface material, is comparatively higher than that of the various cases studied, indicating that there could be good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4HSiC hetero-epitaxial material system.

Keywords: Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1396 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structureprocess- property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: Biosensor, design, DNA, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1395 Molecular Dynamics Simulation of Liquid-Vapor Interface on the Solid Surface Using the GEAR-S Algorithm

Authors: D. Toghraie, A. R. Azimian

Abstract:

In this paper, the Lennard -Jones potential is applied to molecules of liquid argon as well as its vapor and platinum as solid surface in order to perform a non-equilibrium molecular dynamics simulation to study the microscopic aspects of liquid-vapor-solid interactions. The channel is periodic in x and y directions and along z direction it is bounded by atomic walls. It was found that density of the liquids near the solid walls fluctuated greatly and that the structure was more like a solid than a liquid. This indicates that the interactions of solid and liquid molecules are very strong. The resultant surface tension, liquid density and vapor density are found to be well predicted when compared with the experimental data for argon. Liquid and vapor densities were found to depend on the cutoff radius which induces the use of P3M (particle-particle particle-mesh) method which was implemented for evaluation of force and surface tension.

Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1394 Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies

Authors: Minky Son, Chanin Park, Ayoung Baek, Shalini John, Keun Woo Lee

Abstract:

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.

Keywords: Anti-hypercholesterolemia drug, HMGR inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1393 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: Copper-CO2 nanofluid, molecular interfacial layer, thermal conductivity, molecular dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1392 Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms

Authors: D.Toghraie, A.R.Azimian

Abstract:

Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.

Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD), Annular Flow Boiling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1391 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: Biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1390 Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

Authors: J. Davoodi, F. Katouzi

Abstract:

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.

Keywords: Au3Ni Nanowire, Thermal properties, Molecular dynamics simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1389 Molecular Dynamic Simulation and Receptor-based Pharmacophore Modeling on Human Renin for Discovery of Novel Inhibitors

Authors: Chanin Park, Sundarapandian Thangapandian, Yuno Lee, Minky Son, Shalini John, Young-sik Sohn, Keun Woo Lee

Abstract:

Hypertension is characterized with stress on the heart and blood vessels thus increasing the risk of heart attack and renal diseases. The Renin angiotensin system (RAS) plays a major role in blood pressure control. Renin is the enzyme that controls the RAS at the rate-limiting step. Our aim is to develop new drug-like leads which can inhibit renin and thereby emerge as therapeutics for hypertension. To achieve this, molecular dynamics (MD) simulation and receptor-based pharmacophore modeling were implemented, and three rennin-inhibitor complex structures were selected based on IC50 value and scaffolds of inhibitors. Three pharmacophore models were generated considering conformations induced by inhibitor. The compounds mapped to these models were selected and subjected to drug-like screening. The identified hits were docked into the active site of renin. Finally, hit1 satisfying the binding mode and interaction energy was selected as possible lead candidate to be used in novel renin inhibitors.

Keywords: Renin inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1388 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

Authors: Bei Li, Qiu B. Chen, Chee H. Wong

Abstract:

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1387 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: Anti-cancer drug, center of Mass, interaction energy, molecular dynamics simulation, nanocarrier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1386 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1385 Using Molecular Dynamics to Assess Mechanical Properties of PAN-Based Carbon Fibers Comprising Imperfect Crystals with Amorphous Structures

Authors: A. Ito, S. Okamoto

Abstract:

We constructed an atomic structure model for a PAN-based carbon fiber containing amorphous structures using molecular dynamics methods. It was found that basic physical properties such as crystallinity, Young’s modulus, and thermal conductivity of our model were nearly identical to those of real carbon fibers. We then obtained the tensile strength of a carbon fiber, which has no macro defects. We finally determined that the limitation of the tensile strength was 19 GPa.

Keywords: Amorphous, carbon fiber, molecular dynamics, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1384 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Authors: Jeong-Won Kang

Abstract:

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1383 Source of Oseltamivir Resistance Due to R152K Mutation of Influenza B Virus Neuraminidase: Molecular Modeling

Authors: J. Tengrang, T. Rungrotmongkol, S. Hannongbua

Abstract:

Every 2-3 years the influenza B virus serves epidemics. Neuraminidase (NA) is an important target for influenza drug design. Although, oseltamivir, an oral neuraminidase drug, has been shown good inhibitory efficiency against wild-type of influenza B virus, the lower susceptibility to the R152K mutation has been reported. Better understanding of oseltamivir efficiency and resistance toward the influenza B NA wild-type and R152K mutant, respectively, could be useful for rational drug design. Here, two complex systems of wild-type and R152K NAs with oseltamivir bound were studied using molecular dynamics (MD) simulations. Based on 5-ns MD simulation, the loss of notable hydrogen bond and decrease in per-residue decomposition energy from the mutated residue K152 contributed to drug compared to those of R152 in wildtype were found to be a primary source of high-level of oseltamivir resistance due to the R152K mutation.

Keywords: Influenza B neuraminidase, Molecular dynamics simulation, Oseltamivir resistance, R152K mutant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1382 Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

Authors: Sanwu Wang, Hongli Dang, Wenhua Xue, Darwin Shields, Xin Liu, Friederike C. Jentoft, Daniel E. Resasco

Abstract:

The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurations at the water-Pd interface promote decarbonylation of furfural.

Keywords: Ab initio molecular dynamics simulations, bio-fuels, density functional theory, liquid-solid interfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1381 Influence of Inter-tube Connections on the Stress-Strain Behavior of Nanotube-Polymer Composites: Molecular Dynamics

Authors: Jianwei Zhang, Dazhi Jiang, Huaxin Peng, Chunqi Wang

Abstract:

Stress-strain curve of inter-tube connected carbon nanotube (CNT) reinforced polymer composite under axial loading generated from molecular dynamics simulation is presented. Comparison of the response to axial mechanical loading between this composite system with composite systems reinforced by long, continuous CNTs (replicated via periodic boundary conditions) and short, discontinuous CNTs has been made. Simulation results showed that the inter-tube connection improved the mechanical properties of short discontinuous CNTs dramatically. Though still weaker than long CNT/polymer composite, more remarkable increase in the stiffness relative to the polymer was observed in the inter-tube connected CNT/polymer composite than in the discontinuous CNT/polymer composite. The manually introduced bridge break process resulted in a stress-strain curve of ductile fracture mode, which is consistent with the experimental result.

Keywords: Carbon nanotube, inter-tube connection, molecular dynamics, stress-strain curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1380 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets

Authors: Sajjad Seifoori

Abstract:

Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).

Keywords: Impact, molecular dynamic, graphene, nanotube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1379 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation

Authors: M. Dehestani, M. Ghasemi-Kooch

Abstract:

In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.

Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1378 Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite – A Molecular Dynamics Analysis

Authors: R. Mohan, V. Jadhav, A. Ahmed, J. Rivas, A. Kelkar

Abstract:

Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular / nanoscale models is demonstrated.

Keywords: Cement composite, Mechanical Properties, Molecular Dynamics, Plasticizer additives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1377 Computational Analysis of Potential Inhibitors Selected Based On Structural Similarity for the Src SH2 Domain

Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai

Abstract:

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

Keywords: Nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1376 Simulation of Water Droplet on Horizontally Smooth and Rough Surfaces Using Quasi-Molecular Modelling

Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

We developed a method based on quasi-molecular modelling to simulate the fall of water drops on horizontally smooth and rough surfaces. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a falling water droplet was simulated at low impact velocity on both smooth and rough surfaces, the droplets moved periodically (i.e. the droplets moved up and down for a certain period, finally they stopped moving and reached a steady state), spreading and recoiling without splash or break-up. Spreading rates of falling water droplets increased rapidly as time increased until the spreading rate reached its steady state at time t ~ 0.25 s for rough surface and t ~ 0.40 s for smooth surface. The droplet height above both surfaces decreased as time increased, remained constant after the droplet diameter attained a maximum value and reached its steady state at time t ~ 0.4 s. However, rough surface had higher spreading rates of falling water droplets and lower height on the surface than smooth one.

Keywords: Quasi-molecular modelling, particle modelling, molecular aggregate approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1375 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto H´ıjar

Abstract:

We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1374 Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Authors: A. Meeprasert, W. Khuntawee, S. Hannongbua, T. Rungrotmongkol

Abstract:

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

Keywords: Laninamivir, neuraminidase, H5N1, pandemic H1N1, wild-type, MD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1373 Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog

Authors: Safyeh Soufian, Hoosein Naderi-Manesh, Abdoali Alizadeh, Mohammad Nabi Sarbolouki

Abstract:

Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.

Keywords: Antimicrobial peptides, retro, molecular dynamic, circular dichroism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1372 Strategic Management via System Dynamics Simulation Models

Authors: G. Papageorgiou, A. Hadjis

Abstract:

This paper examines the problem of strategic management in highly turbulent dynamic business environmental conditions. As shown the high complexity of the problem can be managed with the use of System Dynamics Models and Computer Simulation in obtaining insights, and thorough understanding of the interdependencies between the organizational structure and the business environmental elements, so that effective product –market strategies can be designed. Simulation reveals the underlying forces that hold together the structure of an organizational system in relation to its environment. Such knowledge will contribute to the avoidance of fundamental planning errors and enable appropriate proactive well focused action.

Keywords: Strategic Management, System Dynamics, Modelingand Simulation, Strategic Planning, Organizational Dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1371 Molecular Mechanism of Amino Acid Discrimination for the Editing Reaction of E.coli Leucyl-tRNA Synthetase

Authors: Keun Woo Lee, Minky Son, Chanin Park, Ayoung Baek

Abstract:

Certain tRNA synthetases have developed highly accurate molecular machinery to discriminate their cognate amino acids. Those aaRSs achieve their goal via editing reaction in the Connective Polypeptide 1 (CP1). Recently mutagenesis studies have revealed the critical importance of residues in the CP1 domain for editing activity and X-ray structures have shown binding mode of noncognate amino acids in the editing domain. To pursue molecular mechanism for amino acid discrimination, molecular modeling studies were performed. Our results suggest that aaRS bind the noncognate amino acid more tightly than the cognate one. Finally, by comparing binding conformations of the amino acids in three systems, the amino acid binding mode was elucidated and a discrimination mechanism proposed. The results strongly reveal that the conserved threonines are responsible for amino acid discrimination. This is achieved through side chain interactions between T252 and T247/T248 as well as between those threonines and the incoming amino acids.

Keywords: Amino acid discrimination, Binding free energy Leucyl-tRNAsynthetase, Molecular dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF