Search results for: microfluidic paper-based electrochemical biosensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 152

Search results for: microfluidic paper-based electrochemical biosensors

152 Microfluidic Paper-Based Electrochemical Biosensor

Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi

Abstract:

A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.

Keywords: Multiplex, microfluidic paper-based electrochemical biosensors, biomarkers, biological fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
151 Highly-Efficient Photoreaction Using Microfluidic Device

Authors: Shigenori Togashi, Yukako Asano

Abstract:

We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.

Keywords: Microfluidic device, Photoreaction, Benzophenone, Black Aluminum Oxide, Detection, Yield Improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
150 Integration of CMOS Biosensor into a Polymeric Lab-on-a-Chip System

Authors: T. Brettschneider, C. Dorrer, H. Suy, T. Braun, E. Jung, R. Hoofman, M. Bründel, R. Zengerle, F. Lärmer

Abstract:

We present an integration approach of a CMOS biosensor into a polymer based microfluidic environment suitable for mass production. It consists of a wafer-level-package for the silicon die and laser bonding process promoted by an intermediate hot melt foil to attach the sensor package to the microfluidic chip, without the need for dispensing of glues or underfiller. A very good condition of the sensing area was obtained after introducing a protection layer during packaging. A microfluidic flow cell was fabricated and shown to withstand pressures up to Δp = 780 kPa without leakage. The employed biosensors were electrically characterized in a dry environment.

Keywords: CMOS biosensor, laser bonding, silicon polymer integration, wafer level packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
149 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
148 Modified Poly(pyrrole) Film Based Biosensors for Phenol Detection

Authors: S. Korkut, M. S. Kilic, E. Erhan

Abstract:

In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly(Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.

Keywords: Carbon nanotube, Phenol biosensor, Polypyrrole, Poly(glutaraldehyde).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
147 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment

Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy

Abstract:

In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.

Keywords: Microfluidic, biosensor, MEMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
146 Size Control of Nanoparticles Using a Microfluidic Device

Authors: Shigenori Togashi, Erika Katayama, Mitsuhiro Matsuzawa

Abstract:

We have developed a microfluidic device system for the continuous producting of nanoparticles, and we have clarified the relationship between the mixing performance of reactors and the particle size. First, we evaluated the mixing performance of reactors by carring out the Villermaux–Dushman reaction and determined the experimental conditions for producing AgCl nanoparticles. Next, we produced AgCl nanoparticles and evaluated the mixing performance and the particle size. We found that as the mixing performance improves the size of produced particles decreases and the particle size distribution becomes sharper. We produced AgCl nanoparticles with a size of 86 nm using the microfluidic device that had the best mixing performance among the three reactors we tested in this study; the coefficient of variation (Cv) of the size distribution of the produced nanoparticles was 26.1%.

Keywords: Microfluidic, Mixing, Nanoparticle, Silver Chloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
145 Disinfection of Water by Adsorption with Electrochemical Regeneration

Authors: S. N. Hussain, H. M. A. Asghar, E. P. L. Roberts, N. W. Brown

Abstract:

Arvia®, a spin-out company of University of Manchester, UK is commercialising a water treatment technology for the removal of low concentrations of organics from water. This technology is based on the adsorption of organics onto graphite based adsorbents coupled with their electrochemical regeneration in a simple electrochemical cell. In this paper, the potential of the process to adsorb microorganisms and electrochemically disinfect them present in water has been demonstrated. Bench scale experiments have indicated that the process of adsorption using graphite adsorbents with electrochemical regeneration can be used for water disinfection effectively. The most likely mechanisms of disinfection of water through this process include direct electrochemical oxidation and electrochemical chlorination.

Keywords: Arvia, Adsorption, Electrochemical Regeneration, Nyex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
144 Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology

Authors: J. Ruenin, S. Sukprasong, R. Phatthanakun, N. Chomnawang, P. Kuntanawat

Abstract:

In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.

Keywords: Algal cells, microfluidic device, X-ray LIGA, X-ray lithography, metallic mold, synchrotron light, PDMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
143 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: Hydrothermal growth, zinc dioxide, biosensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
142 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation

Authors: Chih-Wei Chao, Jiashing Yu

Abstract:

To mimic the natural circumstances of cell growth in an organism, we present three-dimensional (3D) scaffolds fabricated by microfluidics for cultivation. This work investigates the cellular behaviors of rat cardiomyocytes in gelatin 3D scaffolds compared to those on 2D control, such as proliferation, viability and morphology. We found that the scaffolds may induce skeletal differentiation of H9c2 cells.

Keywords: Microfluidic device, H9c2, tissue engineering, 3D scaffolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
141 Formation of Byproducts during Regeneration of Various Graphitic Adsorbents in a Batch Electrochemical Reactor

Authors: S. N. Hussain, H. M. A. Asghar, H. Sattar, N. W. Brown, E. P. L. Roberts

Abstract:

A water treatment technology employing the adsorption of dissolved organic contaminants from water and their electrochemical regeneration has been commercialized by Arvia Technology Ltd, UK. This technology focuses the adsorption of pollutants onto the surface of low surface area graphite based adsorbents followed by the anodic oxidation of adsorbed species in an electrochemical cell. However, some of the adsorbed species may lead to the formation of intermediate breakdown products due to incomplete oxidation. The information regarding the formation of breakdown products during electrochemical regeneration of these adsorbents is important for the effective application of this process to water treatment. In the present paper, the formation of the break down products during electrochemical regeneration of various graphite based adsorbents has been demonstrated.

Keywords: Arvia®, Adsorption, Electrochemical Regeneration, Breakdown products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
140 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
139 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL, electrokinetic, electroosmotic, microfluidics, zeta potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
138 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: Electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
137 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength

Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari

Abstract:

Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settings

Keywords: Electrochemical condition, ionic strength, viscosity, xanthan gum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
136 Formation of Round Channel for Microfluidic Applications

Authors: A. Zahra, G. de Cesare, D. Caputo, A. Nascetti

Abstract:

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Keywords: Lab-on-Chip, PDMS, Reflow, Round microfluidic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
135 Modeling of Sensitivity for SPR Biosensors- New Aspects

Authors: Volodymyr Chegel

Abstract:

The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width.

Keywords: Surface Plasmon Resonance, modeling, sensitivity, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
134 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: Bio-electrochemical, nanowires, wastewater, treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
133 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
132 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie

Abstract:

The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.

Keywords: Contraction, Electroviscous, Microfluidic, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
131 Investigation of Titanium Oxide Layer in Thermal-Electrochemical Anodizing of Ti6Al4V Alloy

Authors: Z. Abdolldhi, A. A. Ziaee M., A. Afshar

Abstract:

In this paper the combination of thermal oxidation and electrochemical anodizing processes is used to produce titanium oxide layers. The response of titanium alloy Ti6Al4V to oxidation processes at various temperatures and electrochemical anodizing in various voltages are investigated. Scanning electron microscopy (SEM); X-Ray Diffraction (XRD) and porosity determination have been used to characterize the oxide layer thickness, surface morphology, oxide layer-substrate adhesion and porosity. In the first experiment, samples modified by thermal oxidation process then followed by electrochemical anodizing. Second experiment consists of surfaces modified by electrochemical anodizing process and then followed by thermal oxidation. The first method shows better properties than other one. In second experiment, Surfaces modified were achieved by thicker and more adherent thick oxide layers on titanium surface. The existence of an electrochemical anodized oxide layer did not improve the adhesion of thermal oxide layer. The high temperature, thermal formation of an oxide layer leads to a coarse oxide grain morphology and a complete oxidative particle. In addition, in high temperature oxidation porosity content is increased. The oxide layer of thermal oxidation and electrochemical anodizing processes; on Ti–6Al–4V substrate was covered with different colored oxide layers.

Keywords: Electrochemically anodizing, Porosity, Thermaloxidation, Ti6Al4 alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327
130 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: Electrochemical impedance spectroscopy, intergranular corrosion, sensitization, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
129 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
128 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: Adsorption, electrochemical oxidation, metals, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
127 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
126 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration

Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar

Abstract:

A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.

Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3161
125 Evaluation of the Inhibitive Effect of Novel Quinoline Schiff Base on Corrosion of Mild Steel in HCl Solution

Authors: Smita Jauhari, Bhupendra Mistry

Abstract:

Schiff base (E)-2-methyl-N-(tetrazolo[1,5-a]quinolin-4-ylmethylene)aniline (QMA) was synthesized, and its inhibitive effect for mild steel in 1N HCl solution was investigated by weight loss measurement and electrochemical tests. From the weight loss measurements and electrochemical tests, it was observed that the inhibition efficiency increases with the increase in the Schiff base concentration and reaches a maximum at the optimum concentration. This is further confirmed by the decrease in corrosion rate. It is found that the system follows Langmuir adsorption isotherm.

Keywords: Schiff base, acid corrosion, electrochemical impedance spectroscopy, polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
124 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
123 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793