Search results for: life cycle assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3199

Search results for: life cycle assessment

3199 Combing LCIA and Fuzzy Risk Assessment for Environmental Impact Assessment

Authors: Kevin Fong-Rey Liu, Cheng-Wu Chen, Ken Yeh, Han-Hsi Liang

Abstract:

Environmental impact assessment (EIA) is a procedure tool of environmental management for identifying, predicting, evaluating and mitigating the adverse effects of development proposals. EIA reports usually analyze how the amounts or concentrations of pollutants obey the relevant standards. Actually, many analytical tools can deepen the analysis of environmental impacts in EIA reports, such as life cycle assessment (LCA) and environmental risk assessment (ERA). Life cycle impact assessment (LCIA) is one of steps in LCA to introduce the causal relationships among environmental hazards and damage. Incorporating the LCIA concept into ERA as an integrated tool for EIA can extend the focus of the regulatory compliance of environmental impacts to determine of the significance of environmental impacts. Sometimes, when using integrated tools, it is necessary to consider fuzzy situations due to insufficient information; therefore, ERA should be generalized to fuzzy risk assessment (FRA). Finally, the use of the proposed methodology is demonstrated through the study case of the expansion plan of the world-s largest plastics processing factory.

Keywords: Fuzzy risk analysis, life cycle impact assessment, fuzzy logic, environmental impact assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
3198 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH are found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: Building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5068
3197 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally, the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: Building life cycle energy, embodied energy, energy design measures, low energy buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
3196 Reliability-Based Life-Cycle Cost Model for Engineering Systems

Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski

Abstract:

The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life-cycle cost of an electric motor.

Keywords: Initial Cost, Life-cycle cost, Maintenance Cost, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
3195 Information System Life Cycle: Applications in Construction and Manufacturing

Authors: Carlos J. Costa, Manuela Aparício

Abstract:

In this paper, we present the information life cycle, and analyze the importance of managing the corporate application portfolio across this life cycle. The approach presented here does not correspond just to the extension of the traditional information system development life cycle. This approach is based in the generic life cycle employed in other contexts like manufacturing or marketing. In this paper it is proposed a model of an information system life cycle, supported in the assumption that a system has a limited life. But, this limited life may be extended. This model is also applied in several cases; being reported here two examples of the framework application in a construction enterprise, and in a manufacturing enterprise.

Keywords: Information systems/technology, informatio nsystems life cycle, organization engineering, information economics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
3194 Managing the Information System Life Cycle in Construction and Manufacturing

Authors: Carlos J. Costa, Manuela Aparício

Abstract:

In this paper we present the information life cycle and analyze the importance of managing the corporate application portfolio across this life cycle. The approach presented here corresponds not just to the extension of the traditional information system development life cycle. This approach is based in the generic life cycle. In this paper it is proposed a model of an information system life cycle, supported in the assumption that a system has a limited life. But, this limited life may be extended. This model is also applied in several cases; being reported here two examples of the framework application in a construction enterprise and in a manufacturing enterprise.

Keywords: Information systems/technology, information systems life cycle, organization engineering, information economics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
3193 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor

Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee

Abstract:

Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.

Keywords: Accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
3192 Life Cycle Assessment of Precast Concrete Units

Authors: Ya Hong Dong, Conrad T.C. Wong, S. Thomas Ng, James M.W. Wong

Abstract:

Precast concrete has been widely adopted in public housing construction of Hong Kong since the mid-1980s. While pre-casting is considered an environmental friendly solution, there is lack of study to investigate the life cycle performance of precast concrete units. This study aims to bridge the knowledge gap by providing a comprehensive life cycle assessment (LCA) study for two precast elements namely façade and bathroom. The results show that raw material is the most significant contributor of environmental impact accounting for about 90% to the total impact. Furthermore, human health is more affected by the production of precast concrete than the ecosystems.

Keywords: Environment, green, LCA, LCIA, precast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
3191 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m×1.2m), are 81.7 mPt and -52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.

Keywords: Aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3205
3190 Comparative Life Cycle Assessment of Rapeseed Oil and Biodiesel from Winter Rape Produced in Romania

Authors: Raluca-Cristina Buţurcă, CarlesM.Gasol, Xavier Gabarrell, Dan Scarpete

Abstract:

The environmental performance of rapeseed oil (RO) and rapeseed methyl ester(RME) from winter rape as fuels produced in Romanian agroclimate is analyzed in this paper. The proposed methodology is life cycle assessment (LCA) and takes into consideration the influence of grain production and agroclimatic conditions. This study shows favorable results first for RO and then for RME. When compared to diesel fuel, both studied biofuels show better results in the following impact categories: Abiotic depletion potential (ADP), Ozone layer depletion (ODP) and Photochemical ozone creation potential (POCP).Furthermore, the environmental performance of the two biofuels studied can be improved by changing the type of fertilizer used and also by using biofuels instead of diesel in the field works.

Keywords: Biodiesel, life cycle assessment, rapeseed oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
3189 Life Cycle Assessment of Expressway Passenger Transport Service: A Case Study of Thailand

Authors: Watchara Surawong, Cheema Soralumn

Abstract:

This research work is concerned with the life cycle assessment (LCA) of an expressway, as well as its infrastructure, in Thailand. The life cycle of an expressway encompasses the raw material acquisition phase, the construction phase, the use or service phase, the rehabilitation phase, and finally the demolition and disposal phase. The LCA in this research was carried out using CML baseline 2000 and in accordance with the ISO 14040 standard. A functional unit refers to transportation of one person over one kilometer of a 3-lane expressway with a 50-year lifetime. This research has revealed that the construction phase produced the largest proportion of the environmental impact (81.46%), followed by the service, rehabilitation, demolition and disposal phases and transportation at 11.97%, 3.72% 0.33% and 2.52%, respectively. For the expressway under study, the total carbon footprint over its lifetime is equivalent to 245,639 tons CO2-eq per 1 kilometer functional unit, with the phases of construction, service, rehabilitation, demolition and disposal and transportation contributing 153,690; 73,773; 3693, 755 and 13,728 tons CO2-eq, respectively. The findings could be adopted as a benchmark against which the environmental impacts of future similar projects can be measured.

Keywords: Environmental impact assessment, Life cycle assessment, LCA, Expressway passenger transport service, Carbon footprint, Eco-friendly expressway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
3188 A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor

Authors: Youn-Sung Kim, Mi-Sung Kim, Jae-Kun Lee

Abstract:

This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample.

Keywords: Accelerated life cycle test, motor reliability test, motor for washing machine, BLDC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524
3187 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case

Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa Rodríguez

Abstract:

Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67%. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85%, 59%, 87%, and 29%, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09% for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determines the sustainability of the process.

Keywords: Exergy analysis, Life Cycle Assessment, LCA, renewability, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
3186 A Review of Quality Relationship between IT Processes, IT Products and IT Services

Authors: Whee Yen Wong, Chan Wai Lee, Kim Yeow Tshai

Abstract:

Producing IT products/services required carefully designed. IT development process is intangible and labour intensive. Making optimal use of available resources, both soft (knowledge, skill-set etc.) and hard (computer system, ancillary equipment etc.), is vital if IT development is to achieve sensible economical advantages. Apart from the norm of Project Life Cycle and System Development Life Cycle (SDLC), there is an urgent need to establish a general yet widely acceptable guideline on the most effective and efficient way to precede an IT project in the broader view of Product Life Cycle. The current paper proposes such a framework with two major areas of concern: (1) an integration of IT Products and IT Services within an existing IT Process architecture and; (2) how IT Product and IT Services are built into the framework of Product Life Cycle, Project Life Cycle and SDLC.

Keywords: Mapping of Quality Relationship, IT Processes/IT Products/IT Services, Product Life Cycle, System Development Life Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
3185 Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS

Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang

Abstract:

Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.

Keywords: Environmental management system, environmental aspect, risk assessment, life cycle assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
3184 Integrating Life Cycle Uncertainties for Evaluating a Building Overall Cost

Authors: M. Arja, G. Sauce, B. Souyri

Abstract:

Overall cost is a significant consideration in any decision-making process. Although many studies were carried out on overall cost in construction, little has treated the uncertainties of real life cycle development. On the basis of several case studies, a feedback process was performed on the historical data of studied buildings. This process enabled to identify some factors causing uncertainty during the operational period. As a result, the research proposes a new method for assessing the overall cost during a part of the building-s life cycle taking account of the building actual value, its end-of-life value and the influence of the identified life cycle uncertainty factors. The findings are a step towards a higher level of reliability in overall cost evaluation taking account of some usually unexpected uncertainty factors.

Keywords: Asset management, building life cycle uncertainty, building value, overall cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
3183 Comparison of Conventional and “ECO“Transportation Pavements in Cyprus using Life Cycle Approach

Authors: Constantia Achilleos, Diofantos G. Hadjimitsis

Abstract:

Road industry has challenged the prospect of ecoconstruction. Pavements may fit within the framework of sustainable development. Hence, research implements assessments of conventional pavements impacts on environment in use of life cycle approach. To meet global, and often national, targets on pollution control, newly introduced pavement designs are under study. This is the case of Cyprus demonstration, which occurred within EcoLanes project work. This alternative pavement differs on concrete layer reinforced with tire recycling product. Processing of post-consumer tires produces steel fibers improving strength capacity against cracking. Thus maintenance works are relevantly limited in comparison to flexible pavement. This enables to be more ecofriendly, referenced to current study outputs. More specific, proposed concrete pavement life cycle processes emits 15 % less air pollutants and consumes 28 % less embodied energy than those of the asphalt pavement. In addition there is also a reduction on costs by 0.06 %.

Keywords: Environmental impact assessment, life cycle, tirerecycling, transportation pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
3182 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: Discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
3181 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE).

All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging.

Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH.

The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: Polymer packaging, life cycle assessment, resource efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4395
3180 Addressing Data Security in the Cloud

Authors: Marinela Mircea

Abstract:

The development of information and communication technology, the increased use of the internet, as well as the effects of the recession within the last years, have lead to the increased use of cloud computing based solutions, also called on-demand solutions. These solutions offer a large number of benefits to organizations as well as challenges and risks, mainly determined by data visualization in different geographic locations on the internet. As far as the specific risks of cloud environment are concerned, data security is still considered a peak barrier in adopting cloud computing. The present study offers an approach upon ensuring the security of cloud data, oriented towards the whole data life cycle. The final part of the study focuses on the assessment of data security in the cloud, this representing the bases in determining the potential losses and the premise for subsequent improvements and continuous learning.

Keywords: cloud computing, data life cycle, data security, security assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
3179 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: Life cycle assessment, aluminum production, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4505
3178 Effective Security Method for Wireless LAN using Life-Cycle of Wireless Access Point

Authors: Soon-Tai Park, Haeryong Park, Myoung-sun Noh, Yoo-Jae Won

Abstract:

There are many expand of Wi-Fi zones provided mobile careers and usage of wireless access point at home as increase of usage of wireless internet caused by the use of smart phone. This paper shows wireless local area network status, security threats of WLAN and functionality of major wireless access point in Korea. We propose security countermeasures concerned with life cycle of access point from manufacturing to installation, using and finally disposal. There needed to releasing with configured secure at access point. Because, it is most cost effective resolution than stage of installation or other life cycle of access point.

Keywords: Wireless LAN Security, Wi-Fi Security, Wireless Access Point, Product Life-Cycle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
3177 A Strategic Evaluation Approach for Defining the Maturity of Manufacturing Technologies

Authors: G. Reinhart, S. Schindler

Abstract:

Due to dynamic evolution, the ability of a manufacturing technology to produce a special product is changing. Therefore, it is essential to monitor the established techniques and processes to detect whether a company-s production will fit future circumstances. Concerning the manufacturing technology planning process, companies must decide when to change to a new technology for maintaining and increasing competitive advantages. In this context, the maturity assessment of the focused technologies is crucial. This article presents an approach for defining the maturity of a manufacturing technology from a strategic point of view. The concept is based on the approach of technology readiness level (TRL) according to NASA (National Aeronautics and Space Administration), but also includes dynamic changes. Therefore, the model takes into account the concept of the technology life cycle. Furthermore, it enables a company to estimate the ideal date for implementation of a new manufacturing technology.

Keywords: Maturity Assessment, Manufacturing Technology Planning, Technology Life Cycle, Technology Readiness Level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
3176 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on abiotic depletion potential (ADP) and acidification potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on ecotaxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: Biodiesel, Ethanol, Life Cycle Assessment, Methanol, Soybean Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347
3175 A Consumption-Based Hybrid Life Cycle Assessment of Carbon Footprints in California: High Footprints in Small Urban Households

Authors: Jukka Heinonen

Abstract:

Higher density reduces distances, private car dependency and thus reduces greenhouse gas emissions (GHGs). As a result, increased density has been given a central role among urban development targets. However, it is not just travel behavior that changes along with density. Rather, the consumption patterns, or overall lifestyles, change along with changing urban structure, particularly with changing housing types and consumption opportunities. Furthermore, elevated consumption of services, more frequent flying and less intra-household sharing have been shown to potentially outweigh the gains from reduced driving in more dense urban settlements. In this study, the geography of carbon footprints (CFs) in California is analyzed paying close attention to the household size differences and the resulting economies-of-scale advantages and disadvantages. A hybrid life cycle assessment (LCA) framework is employed together with consumer expenditure data to assess the CFs. According to the study, small urban households have the highest CFs in California. Their transport related emissions are significantly lower than those of the residents of less urbanized areas, but higher emissions from other consumption categories, together with the low degree of sharing of goods, overweigh the gains. Two functional units, per capita and per household, are used to analyze the CFs and to demonstrate the importance of household size. The lifestyle impacts visible through the consumption data are also discussed. The study suggests that there are still significant gaps in our understanding of the premises of low-carbon human settlements.

Keywords: Carbon footprint, life cycle assessment, consumption, lifestyle, household size, economies-of-scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
3174 Life Cycle Datasets for the Ornamental Stone Sector

Authors: Isabella Bianco, Gian Andrea Blengini

Abstract:

The environmental impact related to ornamental stones (such as marbles and granites) is largely debated. Starting from the industrial revolution, continuous improvements of machineries led to a higher exploitation of this natural resource and to a more international interaction between markets. As a consequence, the environmental impact of the extraction and processing of stones has increased. Nevertheless, if compared with other building materials, ornamental stones are generally more durable, natural, and recyclable. From the scientific point of view, studies on stone life cycle sustainability have been carried out, but these are often partial or not very significant because of the high percentage of approximations and assumptions in calculations. This is due to the lack, in life cycle databases (e.g. Ecoinvent, Thinkstep, and ELCD), of datasets about the specific technologies employed in the stone production chain. For example, databases do not contain information about diamond wires, chains or explosives, materials commonly used in quarries and transformation plants. The project presented in this paper aims to populate the life cycle databases with specific data of specific stone processes. To this goal, the methodology follows the standardized approach of Life Cycle Assessment (LCA), according to the requirements of UNI 14040-14044 and to the International Reference Life Cycle Data System (ILCD) Handbook guidelines of the European Commission. The study analyses the processes of the entire production chain (from-cradle-to-gate system boundaries), including the extraction of benches, the cutting of blocks into slabs/tiles and the surface finishing. Primary data have been collected in Italian quarries and transformation plants which use technologies representative of the current state-of-the-art. Since the technologies vary according to the hardness of the stone, the case studies comprehend both soft stones (marbles) and hard stones (gneiss). In particular, data about energy, materials and emissions were collected in marble basins of Carrara and in Beola and Serizzo basins located in the province of Verbano Cusio Ossola. Data were then elaborated through an appropriate software to build a life cycle model. The model was realized setting free parameters that allow an easy adaptation to specific productions. Through this model, the study aims to boost the direct participation of stone companies and encourage the use of LCA tool to assess and improve the stone sector environmental sustainability. At the same time, the realization of accurate Life Cycle Inventory data aims at making available, to researchers and stone experts, ILCD compliant datasets of the most significant processes and technologies related to the ornamental stone sector.

Keywords: LCA datasets, life cycle assessment, ornamental stone, stone environmental impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
3173 Life Cycle Assessment of Seawater Desalinization in Western Australia

Authors: Wahidul K. Biswas

Abstract:

Perth will run out of available sustainable natural water resources by 2015 if nothing is done to slow usage rates, according to a Western Australian study [1]. Alternative water technology options need to be considered for the long-term guaranteed supply of water for agricultural, commercial, domestic and industrial purposes. Seawater is an alternative source of water for human consumption, because seawater can be desalinated and supplied in large quantities to a very high quality. While seawater desalination is a promising option, the technology requires a large amount of energy which is typically generated from fossil fuels. The combustion of fossil fuels emits greenhouse gases (GHG) and, is implicated in climate change. In addition to environmental emissions from electricity generation for desalination, greenhouse gases are emitted in the production of chemicals and membranes for water treatment. Since Australia is a signatory to the Kyoto Protocol, it is important to quantify greenhouse gas emissions from desalinated water production. A life cycle assessment (LCA) has been carried out to determine the greenhouse gas emissions from the production of 1 gigalitre (GL) of water from the new plant. In this LCA analysis, a new desalination plant that will be installed in Bunbury, Western Australia, and known as Southern Seawater Desalinization Plant (SSDP), was taken as a case study. The system boundary of the LCA mainly consists of three stages: seawater extraction, treatment and delivery. The analysis found that the equivalent of 3,890 tonnes of CO2 could be emitted from the production of 1 GL of desalinated water. This LCA analysis has also identified that the reverse osmosis process would cause the most significant greenhouse emissions as a result of the electricity used if this is generated from fossil fuels

Keywords: Desalinization, Greenhouse gas emissions, life cycle assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3987
3172 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
3171 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
3170 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: Sustainability, post-disaster temporary housing, integrated value model for sustainability assessment (MIVES), life cycle assessment (LCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517