Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 129

Search results for: k-means cluster

129 Applying Clustering of Hierarchical K-means-like Algorithm on Arabic Language

Authors: Sameh H. Ghwanmeh

Abstract:

In this study a clustering technique has been implemented which is K-Means like with hierarchical initial set (HKM). The goal of this study is to prove that clustering document sets do enhancement precision on information retrieval systems, since it was proved by Bellot & El-Beze on French language. A comparison is made between the traditional information retrieval system and the clustered one. Also the effect of increasing number of clusters on precision is studied. The indexing technique is Term Frequency * Inverse Document Frequency (TF * IDF). It has been found that the effect of Hierarchical K-Means Like clustering (HKM) with 3 clusters over 242 Arabic abstract documents from the Saudi Arabian National Computer Conference has significant results compared with traditional information retrieval system without clustering. Additionally it has been found that it is not necessary to increase the number of clusters to improve precision more.

Keywords: Hierarchical K-mean like clustering (HKM), Kmeans, cluster centroids, initial partition, and document distances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
128 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang

Abstract:

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Keywords: PC cluster, automated deployment, cluster computing, PC classroom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
127 Analysis of Entrepreneurship in Industrial Cluster

Authors: Wen-Hsiang Lai

Abstract:

Except for the internal aspects of entrepreneurship (i.e.motivation, opportunity perspective and alertness), there are external aspects that affecting entrepreneurship (i.e. the industrial cluster). By comparing the machinery companies located inside and outside the industrial district, this study aims to explore the cluster effects on the entrepreneurship of companies in Taiwan machinery clusters (TMC). In this study, three factors affecting the entrepreneurship in TMC are conducted as “competition”, “embedded-ness” and “specialized knowledge”. The “competition” in the industrial cluster is defined as the competitive advantages that companies gain in form of demand effects and diversified strategies; the “embedded-ness” refers to the quality of company relations (relational embedded-ness) and ranges (structural embedded-ness) with the industry components (universities, customers and complementary) that affecting knowledge transfer and knowledge generations; the “specialized knowledge” shares theinternal knowledge within industrial clusters. This study finds that when comparing to the companieswhich are outside the cluster, the industrial cluster has positive influence on the entrepreneurship. Additionally, the factor of “relational embedded-ness” has significant impact on the entrepreneurship and affects the adaptation ability of companies in TMC. Finally, the factor of “competition” reveals partial influence on the entrepreneurship.

Keywords: Entrepreneurship, Industrial Cluster, Industrial District, Economies of Agglomerations, Taiwan Machinery Cluster (TMC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
126 Research of Potential Cluster Development in Pannonian Croatia

Authors: Mirjana Radman-Funarić, Katarina Potnik Galić

Abstract:

The paper presents an analysis of linkages and structures of co-operation and their intensity like the potential for the establishment of clusters in the Central and Eastern (Pannonian) Croatian. Starting from the theoretical elaboration of the need for entrepreneurs to organize through the cluster model and the terms of their self-actualization, related to the importance of traditional values in terms of benefits, social capital and assess where the company now is, in order to prove the need to create their own identity in terms of clustering. The institutional dimensions of social capital where the public sector has the best role in creating the social structure of clusters, and social dimensions of social capital in terms of trust, cooperation and networking will be analyzed to what extent the trust and coherency are present between companies in the Brod posavina and Pozega slavonia County, expressed through the readiness of inclusion in clusters in the NUTS II region - Central and Eastern (Pannonian) Croatia, as a homogeneous economic entity, with emphasis on limiting factors that stand in the way of greater competitiveness.

Keywords: Analysis of linkages, structures of co-operation, Cluster, Region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
125 Routing Algorithm for a Clustered Network

Authors: Hemanth KumarA.R, Sudhakara G., Satyanarayana B.S.

Abstract:

The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

Keywords: Metric dimension, Cluster dimension, Cluster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
124 Achieving High Availability by Implementing Beowulf Cluster

Authors: A.F.A. Abidin, N.S.M. Usop

Abstract:

A computer cluster is a group of tightly coupled computers that work together closely so that in many respects they can be viewed as though they are a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks. Clusters are usually deployed to improve performance and/or availability over that provided by a single computer, while typically being much more cost-effective than single computers of comparable speed or availability. This paper proposed the way to implement the Beowulf Cluster in order to achieve high performance as well as high availability.

Keywords: Beowulf Cluster, grid computing, GridMPI, MPICH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
123 LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation

Authors: Arjun Jain, Himanshu Agrawal, Nalini Vasudevan

Abstract:

In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.

Keywords: PC cluster, parallel computations, ray tracing, persistence of vision, rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
122 Analysis of Diverse Cluster Ensemble Techniques

Authors: S. Sarumathi, N. Shanthi, P. Ranjetha

Abstract:

Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.

Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
121 Prediction of Reusability of Object Oriented Software Systems using Clustering Approach

Authors: Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand

Abstract:

In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.

Keywords: CK-Metric, Desicion Tree, Kmeans, Reusability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
120 Analysis of Long-Term File System Activities on Cluster Systems

Authors: Hyeyoung Cho, Sungho Kim, Sik Lee

Abstract:

I/O workload is a critical and important factor to analyze I/O pattern and to maximize file system performance. However to measure I/O workload on running distributed parallel file system is non-trivial due to collection overhead and large volume of data. In this paper, we measured and analyzed file system activities on two large-scale cluster systems which had TFlops level high performance computation resources. By comparing file system activities of 2009 with those of 2006, we analyzed the change of I/O workloads by the development of system performance and high-speed network technology.

Keywords: I/O workload, Lustre, GPFS, Cluster File System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
119 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
118 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
117 Formosa3: A Cloud-Enabled HPC Cluster in NCHC

Authors: Chin-Hung Li, Te-Ming Chen, Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

This paper proposes a new approach to offer a private cloud service in HPC clusters. In particular, our approach relies on automatically scheduling users- customized environment request as a normal job in batch system. After finishing virtualization request jobs, those guest operating systems will dismiss so that compute nodes will be released again for computing. We present initial work on the innovative integration of HPC batch system and virtualization tools that aims at coexistence such that they suffice for meeting the minimizing interference required by a traditional HPC cluster. Given the design of initial infrastructure, the proposed effort has the potential to positively impact on synergy model. The results from the experiment concluded that goal for provisioning customized cluster environment indeed can be fulfilled by using virtual machines, and efficiency can be improved with proper setup and arrangements.

Keywords: Cloud Computing, HPC Cluster, Private Cloud, Virtualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
116 Solar-Inducted Cluster Head Relocation Algorithm

Authors: Goran Djukanovic, Goran Popovic

Abstract:

A special area in the study of Wireless Sensor Networks (WSNs) is how to move sensor nodes, as it expands the scope of application of wireless sensors and provides new opportunities to improve network performance. On the other side, it opens a set of new problems, especially if complete clusters are mobile. Node mobility can prolong the network lifetime. In such WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. This paper presents an idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network reduces, and the lifetime of the network extends. Positioning of CHs is made in each round based on selfish herd hypothesis, where leader retreats to the center of gravity. Based on this idea, an algorithm, together with its modified version, has been presented and tested in this paper. Simulation results show that both algorithms have benefits in network lifetime, and prolongation of network stability period duration.

Keywords: CH-active algorithm, mobile cluster head, sensors, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
115 Parallelization and Optimization of SIFT Feature Extraction on Cluster System

Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu

Abstract:

Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.

Keywords: cluster, image matching, parallelization and optimization, SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
114 Cluster Analysis of Retailers’ Benefits from Their Cooperation with Manufacturers: Business Models Perspective

Authors: M. K. Witek-Hajduk, T. M. Napiórkowski

Abstract:

A number of studies discussed the topic of benefits of retailers-manufacturers cooperation and coopetition. However, there are only few publications focused on the benefits of cooperation and coopetition between retailers and their suppliers of durable consumer goods; especially in the context of business model of cooperating partners. This paper aims to provide a clustering approach to segment retailers selling consumer durables according to the benefits they obtain from their cooperation with key manufacturers and differentiate the said retailers’ in term of the business models of cooperating partners. For the purpose of the study, a survey (with a CATI method) collected data on 603 consumer durables retailers present on the Polish market. Retailers are clustered both, with hierarchical and non-hierarchical methods. Five distinctive groups of consumer durables’ retailers are (based on the studied benefits) identified using the two-stage clustering approach. The clusters are then characterized with a set of exogenous variables, key of which are business models employed by the retailer and its partnering key manufacturer. The paper finds that the a combination of a medium sized retailer classified as an Integrator with a chiefly domestic capital and a manufacturer categorized as a Market Player will yield the highest benefits. On the other side of the spectrum is medium sized Distributor retailer with solely domestic capital – in this case, the business model of the cooperating manufactrer appears to be irreleveant. This paper is the one of the first empirical study using cluster analysis on primary data that defines the types of cooperation between consumer durables’ retailers and manufacturers – their key suppliers. The analysis integrates a perspective of both retailers’ and manufacturers’ business models and matches them with individual and joint benefits.

Keywords: Business model, cooperation, cluster analysis, retailer-manufacturer relationships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
113 Influence of Ambiguity Cluster on Quality Improvement in Image Compression

Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik

Abstract:

Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.

Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
112 Development of a Clustered Network based on Unique Hop ID

Authors: Hemanth Kumar, A. R., Sudhakar G, Satyanarayana B. S.

Abstract:

In this paper, Land Marks for Unique Addressing( LMUA) algorithm is develped to generate unique ID for each and every node which leads to the formation of overlapping/Non overlapping clusters based on unique ID. To overcome the draw back of the developed LMUA algorithm, the concept of clustering is introduced. Based on the clustering concept a Land Marks for Unique Addressing and Clustering(LMUAC) Algorithm is developed to construct strictly non-overlapping clusters and classify those nodes in to Cluster Heads, Member Nodes, Gate way nodes and generating the Hierarchical code for the cluster heads to operate in the level one hierarchy for wireless communication switching. The expansion of the existing network can be performed or not without modifying the cost of adding the clusterhead is shown. The developed algorithm shows one way of efficiently constructing the

Keywords: Cluster Dimension, Cluster Basis, Metric Dimension, Metric Basis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
111 Analysis of Permanence and Extinction of Enterprise Cluster Based On Ecology Theory

Authors: Ping Liu, Yongkun Li

Abstract:

This paper is concerned with the permanence and extinction problem of enterprises cluster constituted by m satellite enterprises and a dominant enterprise. We present the model involving impulsive effect based on ecology theory, which effectively describe the competition and cooperation of enterprises cluster in real economic environment. Applying comparison theorem of impulsive differential equation, we establish sufficient conditions which ultimately affect the fate of enterprises: permanence, extinction, and co-existence. Finally, we present numerical examples to explain the economical significance of mathematical results.

Keywords: Enterprise cluster, permanence, extinction, impulsive, comparison theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
110 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms

Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara

Abstract:

Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.

Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
109 Innovation Development of Food Market of Kazakhstan

Authors: G.B. Nurlikhina, G.N. Azhimetova, R. M. Ashimova

Abstract:

Currently, one of the main directions is developing of development based on the clustering of economic operations of Kazakhstan, providing for the organization and concentration of production capacity in one region or the most optimal system. In the modern economic literature clustering is regarded as one of the most effective tools to ensure competitive businesses, and improve their business itself.

Keywords: A cluster, food market, innovation cluster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
108 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: Cluster analysis, construction management, earned value, schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
107 Implementation of Watch Dog Timer for Fault Tolerant Computing on Cluster Server

Authors: Meenakshi Bheevgade, Rajendra M. Patrikar

Abstract:

In today-s new technology era, cluster has become a necessity for the modern computing and data applications since many applications take more time (even days or months) for computation. Although after parallelization, computation speeds up, still time required for much application can be more. Thus, reliability of the cluster becomes very important issue and implementation of fault tolerant mechanism becomes essential. The difficulty in designing a fault tolerant cluster system increases with the difficulties of various failures. The most imperative obsession is that the algorithm, which avoids a simple failure in a system, must tolerate the more severe failures. In this paper, we implemented the theory of watchdog timer in a parallel environment, to take care of failures. Implementation of simple algorithm in our project helps us to take care of different types of failures; consequently, we found that the reliability of this cluster improves.

Keywords: Cluster, Fault tolerant, Grid, Grid ComputingSystem, Meta-computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
106 Influence of Iron Ore Mineralogy on Cluster Formation inside the Shaft Furnace

Authors: M. Bahgat, H. A. Hanafy, S. Lakdawala

Abstract:

Clustering phenomenon of pellets was observed frequently in shaft processes operating at higher temperatures. Clustering is a result of the growth of fibrous iron precipitates (iron whiskers) that become hooked to each other and finally become crystallized during the initial stages of metallization. If the pellet clustering is pronounced, sometimes leads to blocking inside the furnace and forced shutdown takes place. This work clarifies further the relation between metallic iron whisker growth and iron ore mineralogy. Various pellet sizes (6 – 12.0 & +12.0 mm) from three different ores (A, B & C) were (completely and partially) reduced at 985 oC with H2/CO gas mixture using thermos-gravimetric technique. It was found that reducibility increases by decreasing the iron ore pellet’s size. Ore (A) has the highest reducibility than ore (B) and ore (C). Increasing the iron ore pellet’s size leads to increase the probability of metallic iron whisker formation. Ore (A) has the highest tendency for metallic iron whisker formation than ore (B) and ore (C). The reduction reactions for all iron ores A, B and C are mainly controlled by diffusion reaction mechanism.

Keywords: Shaft furnace, cluster, metallic iron whisker, mineralogy, ferrous metallurgy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
105 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

Authors: Samir Brahim Belhaouari

Abstract:

By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.

Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
104 Proposal to Increase the Efficiency, Reliability and Safety of the Centre of Data Collection Management and Their Evaluation Using Cluster Solutions

Authors: Martin Juhas, Bohuslava Juhasova, Igor Halenar, Andrej Elias

Abstract:

This article deals with the possibility of increasing efficiency, reliability and safety of the system for teledosimetric data collection management and their evaluation as a part of complex study for activity “Research of data collection, their measurement and evaluation with mobile and autonomous units” within project “Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants”. Possible weaknesses in existing system are identified. A study of available cluster solutions with possibility of their deploying to analysed system is presented

Keywords: Teledosimetric data, efficiency, reliability, safety, cluster solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
103 Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping

Authors: Danuvasin Charoen

Abstract:

This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People’s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People’s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter’s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC.

Keywords: Greater Mekong Subregion, competitiveness, cluster, development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
102 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm

Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna

Abstract:

Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.

Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
101 Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

Authors: Mauro Giacomini, Stefania Bertone, Carlo Mansi, Pietro Dulbecco, Vincenzo Savarino

Abstract:

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

Keywords: Cluster analysis, constipation, data mining, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
100 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang

Abstract:

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF