Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: fuzzifier

5 Design of Liquids Mixing Control System using Fuzzy Time Control Discrete Event Model for Industrial Applications

Authors: M.Saleem Khan, Khaled Benkrid

Abstract:

This paper presents a time control liquids mixing system in the tanks as an application of fuzzy time control discrete model. The system is designed for a wide range of industrial applications. The simulation design of control system has three inputs: volume, viscosity, and selection of product, along with the three external control adjustments for the system calibration or to take over the control of the system autonomously in local or distributed environment. There are four controlling elements: rotatory motor, grinding motor, heating and cooling units, and valves selection, each with time frame limit. The system consists of three controlled variables measurement through its sensing mechanism for feed back control. This design also facilitates the liquids mixing system to grind certain materials in tanks and mix with fluids under required temperature controlled environment to achieve certain viscous level. Design of: fuzzifier, inference engine, rule base, deffuzifiers, and discrete event control system, is discussed. Time control fuzzy rules are formulated, applied and tested using MATLAB simulation for the system.

Keywords: Fuzzy time control, industrial application and timecontrol systems, adjustment of Fuzzy system, liquids mixing system, design of fuzzy time control DEV system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
4 Parameter Selections of Fuzzy C-Means Based on Robust Analysis

Authors: Kuo-Lung Wu

Abstract:

The weighting exponent m is called the fuzzifier that can have influence on the clustering performance of fuzzy c-means (FCM) and mÎ[1.5,2.5] is suggested by Pal and Bezdek [13]. In this paper, we will discuss the robust properties of FCM and show that the parameter m will have influence on the robustness of FCM. According to our analysis, we find that a large m value will make FCM more robust to noise and outliers. However, if m is larger than the theoretical upper bound proposed by Yu et al. [14], the sample mean will become the unique optimizer. Here, we suggest to implement the FCM algorithm with mÎ[1.5,4] under the restriction when m is smaller than the theoretical upper bound.

Keywords: fuzzy c-means, robust, fuzzifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
3 Fuzzy Logic PID Control of Automatic Voltage Regulator System

Authors: Aye Aye Mon

Abstract:

The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Keywords: Control Systems, PID Controller, fuzzy logic system, controlled A V R

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
2 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Adaptive fuzzy controller, Hydronic heating system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light

Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: fuzzy controller, Grid voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152