Search results for: dynamic modulus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2147

Search results for: dynamic modulus

2147 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.

Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
2146 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: Calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2145 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan

Abstract:

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
2144 Dynamic Behaviour of Earth Dams for Variation of Earth Material Stiffness

Authors: Y. Parish, F. Najaei Abadi

Abstract:

This paper presents a numerical analysis of the seismic behaviour of earth dams. Analysis is conducted for the solid phase. It may correspond to the response of the dam before water filling. Analysis is conducted for a simple case which concerns the elastic response of the dam. Numerical analyses are conducted using the FLAC3D program. The behaviour of the Shell and core of the dam and the foundation behaviour is assumed to be elastic. Result shows the influence of the variation of the shear modulus of the core and shell on the seismic amplification of the dam. It can be observed that the variation of the shearing modulus of the core leads to a moderate increase in the dynamic amplification and the increase in the shell shearing modulus leads to a significant increase in the dynamic amplification.

Keywords: Numerical, earth dam, seismic, dynamic, core, FLAC3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2143 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain

Authors: M. Kakavand, S. A. Naeini

Abstract:

Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.

Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
2142 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah

Abstract:

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

Keywords: Bimodulus material, hollow clay brick, impulse excitation of vibration, transversely isotropic material, Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396
2141 Selected Technological Factors Influencing the Modulus of Elasticity of Concrete

Authors: Klara Krizova, Rudolf Hela

Abstract:

The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated.

Keywords: Mix design, water-cement ratio, aggregate, modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
2140 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: Bonded rubber, quasi-static test, shape factor, apparent Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
2139 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties

Authors: Innocent Kafodya, Guijun Xian

Abstract:

This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the viscoelastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.

Keywords: Pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
2138 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength

Authors: K. Krizova, R. Hela

Abstract:

The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development in dependence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions.

Keywords: Concrete, Compressive strength, Modulus of elasticity, EuroCode 2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
2137 Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen

Authors: Ashish Kumar, Sanjeev Kumar Suman

Abstract:

This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay.

Keywords: Cloisite-15A, complex shear modulus, phase angle, rutting resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
2136 Approach to Design of Composition of Current Concrete with Respect to Strength and Static Elasticity Modulus

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper reflects current state of popularization of static elasticity modulus of concrete. This parameter is undoubtedly very important for designing of concrete structures, and very often neglected and rarely determined before designing concrete technology itself. The paper describes assessment and comparison of four mix designs with almost constant dosage of individual components. The only difference is area of origin of small size fraction of aggregate 0/4. Development of compressive strength and static elasticity modulus at the age of 7, 28 and 180 days were observed. As the experiment showed, designing of individual components and their quality are the basic factor influencing elasticity modulus of current concrete.

Keywords: Concrete, Aggregate, Strength, Elasticity Modulus, Quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
2135 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen

Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz

Abstract:

Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.

Keywords: Rheological properties, DSR test, polymer mixed with bitumen, complex modulus, lime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
2134 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsić, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the cc for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: Morphology, polycaprolactone, thermal properties, titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4713
2133 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
2132 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites

Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky

Abstract:

In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.

Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
2131 Effect of Spray Stand-off on Elasticity Modulus of Thermally Sprayed Coatings

Authors: M.Jalali Azizpour, S.Norouzi, H.mohammadi Majd, M.M.Rabieh, D.Sajedipour, A. Jaderi

Abstract:

The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).

Keywords: Elasticity modulus, HVOF, Micro-indentation, Thermal spray, WC-Co

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2130 Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys

Authors: I. Kurashvili, G. Darsavelidze, G. Bokuchava, A. Sichinava, I. Tabatadze

Abstract:

The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si1-xGex(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~1015 cm-3) significant strengthening is revealed, while at the high boron concentration (~1019 cm-3) strengthening effect and activation characteristics of relaxation origin IF processes are reduced.

Keywords: Dislocation, internal friction, microhardness, relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965
2129 Effects of Boundary Conditions on the Dynamic Values of Solid Structures

Authors: F. Kadioglu, M. Z. Polat, A. R. Gunay

Abstract:

Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices, and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate the possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. First, the governing equations of beam specimens related to the free-free and clamped-free boundary conditions were expressed to be able to find their natural frequencies, flexural modulus and damping values. To get a clear idea of the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and that the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained. It was obvious that the set-up with clamped-free boundary conditions was not able to produce correct/reliable damping values for the specimens with low inherent damping. 

Keywords: Boundary conditions, damping, dynamic values, non-contact measuring systems, vibrating beam technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
2128 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
2127 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: Combination of aluminum honeycomb panel and rod latticed shell, dynamic performance, response spectrum analysis, seismic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
2126 Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

Authors: R. Sadeghzadegan, S. A. Naeini, A. Mirzaii

Abstract:

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Keywords: Small shear modulus, bender element test, plastic fines, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
2125 Longitudinal Shear Modulus of Single Aramid, Carbon and Glass Fibres by Torsion Pendulum Tests

Authors: I Prasanna Kumar, Satya Prakash Kushwaha, Preetamkumar Mohite, Sudhir Kamle

Abstract:

The longitudinal shear moduli of a single aramid, carbon and glass fibres are measured in the present study. A popularly known concept of freely oscillating torsion pendulum has been used to characterize the torsional modulus. A simple freely oscillating torsional pendulum setup is designed with two different types of plastic discs: horizontal and vertical, as the known mass of the pendulum. The time period of the torsional oscillation is measured to determine the torsional rigidity of the fibre. Then the shear modulus of the fibre is calculated from its torsional rigidity. The mean shear modulus of aramid, carbon and glass fibres  measured are 6.22±0.09, 18.5±0.91, 38.1±3.55 GPa by horizontal disc pendulum and 6.19±0.13, 18.1±1.34 and 39.5±1.83 GPa by vertical disc pendulum, respectively. The results obtained by both pendulums differed by less than 5% and agreed well with the results reported in literature for these three types of fibres. A detailed uncertainty calculations are carried out for the measurements. It is seen that scatter as well as uncertainty (or error) in the measured shear modulus of these fibres is less than 10%. For aramid fibres the effect of gauge length on the shear modulus value is also studied. It is verified that the scatter in measured shear modulus value increases with gauge length and scatter in fibre diameter.

Keywords: Aramid; Carbon; Glass fibres, Longitudinal shear modulus, Torsion pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3708
2124 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: A. Dulaimi, H. Al Nageim, F. Ruddock, L. Seton

Abstract:

This study aims at developing a novel cold asphalt concrete binder course mixture by using Ordinary Portland Cement (OPC) as a replacement for conventional mineral filler (0%-100%) with new by-product material (LJMU-A2) used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was assessed by measuring the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance is achieved by adding LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to a stiffness modulus after 2-day curing compared to that obtained with Portland cement, which occurs after 7-day curing.

Keywords: Binder course, cold mix asphalt, cement, stiffness modulus, water sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
2123 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
2122 Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

Authors: Meor O. Hamzah, Teoh C. Yi

Abstract:

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Keywords: Granite, Resilient Modulus, Steel Slag, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
2121 Morphological and Dynamic Mechanical Analyses of a Local Clay/Plantain Fiber Filled Hybrid Polystyrene Composites

Authors: K. P. Odimayomi, A. G. Adeniyi, S. A. Abdulkareem, F. M. Oladipo Emmanuel, C. A. Adeyanju, M. A Amoloye

Abstract:

The abundant availability of the local clay/plantain fiber coupled with the various renewable and sustainability advantages has led to their choice as co-fillers in the development of a hybrid polystyrene composite. The prime objective of this study is to evaluate the morphological and dynamic mechanical properties using Scanning Electron Microscopy and Dynamic Mechanical Analysis. The hybrid polystyrene composite development was developed via the hand-lay-up method. All processing including the constituent mixing and curing were achieved at room temperature (25 ± 2 ℃).   The mechanical characteristics of the developed composites via Dynamic Mechanical Analysis (DMA) confirm an indirect relationship between time and storage modulus, this pattern becomes more evident at higher frequencies. It is clearly portrayed that the addition of clay and plantain fiber in the polystyrene matrix increases the stiffness of the developed composite.

Keywords: Morphology, DMA, Akerebiata clay, plantain fiber, hybrid polystyrene composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265
2120 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex (x≤0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and mono-crystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. From this point of view, complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at room temperature. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers’ concentration 5.1014-1.1015cm-3. Microhardness was studied on Dynamic Ultra Micro hardness Tester DUH-201S with Berkovich indenter. Investigate samples are characterized with 0,5x0,5x(10-15)mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Dynamic mechanical characteristics decreasing trend is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Internal friction, microhardness, relaxation processes, shear modulus, Si-Ge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2119 Young’s Modulus Variability: Influence on Masonry Vault Behavior

Authors: A. Zanaz, S. Yotte, F. Fouchal, A. Chateauneuf

Abstract:

This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode corresponds to the four-hinge mechanism. Based on this consideration, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation. A relationship linking the vault bearing capacity to the voussoirs modulus variation is proposed. The most probable failure mechanisms, in addition to that observed in the deterministic case, are identified for each variability level as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of variability, while the number of other mechanisms and their probability of occurrence increases with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young’s modulus of the segments is proven, taking it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.

Keywords: Masonry, mechanism, probability, variability, vault.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
2118 Development of Elasticity Modulus in Time for Concrete Containing Mineral Admixtures

Authors: K. Krizova, R. Hela, S. Keprdova

Abstract:

This paper introduces selected composition of conventional concretes and their resulting mechanical properties at different ages of concrete. With respect to utilization of mineral admixtures, fly ash and ground limestone agents were included in addition to pure Portland binder. The proposal of concrete composition remained constant in basic concrete components such as cement and representation of individual contents of aggregate fractions; weight dosing of admixtures and water dose were only modified. Water dose was chosen in order to achieve identical consistence by settlement for all proposals of concrete composition. Mechanical properties monitored include compression strength, static and dynamic modulus of concrete elasticity, at ages of 7, 28, 90, and 180 days.

Keywords: Cement, mineral admixtures, microstructure of concrete, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995