Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37

Search results for: distributed systems

37 Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language

Authors: Lidia N. Hernández-Piña, Carlos R. Jaimez-González

Abstract:

Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.

Keywords: Interoperability, PHP object serialization, PHP to XML, web objects in XML, WOX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
36 Parallel Querying of Distributed Ontologies with Shared Vocabulary

Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane

Abstract:

Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.

Keywords: Distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
35 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: Agent-oriented modeling, business Intelligence management, distributed data mining, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
34 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
33 A General Mandatory Access Control Framework in Distributed Environments

Authors: Feng Yang, Xuehai Zhou, Dalei Hu

Abstract:

In this paper, we propose a general mandatory access framework for distributed systems. The framework can be applied into multiple operating systems and can handle multiple stakeholders. Despite considerable advancements in the area of mandatory access control, a certain approach to enforcing mandatory access control can only be applied in a specific operating system. Other than PC market in which windows captures the overwhelming shares, there are a number of popular operating systems in the emerging smart phone environment, i.e. Android, Windows mobile, Symbian, RIM. It should be noted that more and more stakeholders are involved in smartphone software, such as devices owners, service providers and application providers. Our framework includes three parts—local decision layer, the middle layer and the remote decision layer. The middle layer takes charge of managing security contexts, OS API, operations and policy combination. The design of the remote decision layer doesn’t depend on certain operating systems because of the middle layer’s existence. We implement the framework in windows, linux and other popular embedded systems.

Keywords: Mandatory Access Control, Distributed System, General Platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
32 AGENTMAP: A Conceptual Meta-Model of Interacting Simulations

Authors: Thomas M. Prinz Wilhelm R. Rossak, Kai Gebhardt

Abstract:

A straightforward and intuitive combination of single simulations into an aggregated master-simulation is not trivial. There are lots of problems, which trigger-specific difficulties during the modeling and execution of such a simulation. In this paper we identify these problems and aim to solve them by mapping the task to the field of multi agent systems. The solution is a new meta-model named AGENTMAP, which is able to mitigate most of the problems and to support intuitive modeling at the same time. This meta-model will be introduced and explained on basis of an example from the e-commerce domain.

Keywords: Multi Agent System, Agent-based Simulation, Distributed Systems, Meta-models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
31 On the Joint Optimization of Performance and Power Consumption in Data Centers

Authors: Samee Ullah Khan, C. Ardil

Abstract:

We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.

Keywords: Energy-efficient computing, distributed systems, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
30 A Fuzzy Dynamic Load Balancing Algorithm for Homogenous Distributed Systems

Authors: Ali M. Alakeel

Abstract:

Load balancing in distributed computer systems is the process of redistributing the work load among processors in the system to improve system performance. Most of previous research in using fuzzy logic for the purpose of load balancing has only concentrated in utilizing fuzzy logic concepts in describing processors load and tasks execution length. The responsibility of the fuzzy-based load balancing process itself, however, has not been discussed and in most reported work is assumed to be performed in a distributed fashion by all nodes in the network. This paper proposes a new fuzzy dynamic load balancing algorithm for homogenous distributed systems. The proposed algorithm utilizes fuzzy logic in dealing with inaccurate load information, making load distribution decisions, and maintaining overall system stability. In terms of control, we propose a new approach that specifies how, when, and by which node the load balancing is implemented. Our approach is called Centralized-But-Distributed (CBD).

Keywords: Dynamic load balancing, fuzzy logic, distributed systems, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
29 MONARC: A Case Study on Simulation Analysis for LHC Activities

Authors: Ciprian Dobre

Abstract:

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.

Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
28 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
27 The Comparison of Data Replication in Distributed Systems

Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf

Abstract:

The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.

Keywords: data replication, data hiding, consistency, dynamicdata replication strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
26 A New Extended Group Mutual Exclusion Algorithm with Low Message Complexity in Distributed Systems

Authors: S. Dehghan, A.M. Rahmani

Abstract:

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. In the group mutual exclusion, multiple processes can enter a critical section simultaneously if they belong to the same group. In the extended group mutual exclusion, each process is a member of multiple groups at the same time. As a result, after the process by selecting a group enter critical section, other processes can select the same group with its belonging group and can enter critical section at the moment, so that it avoids their unnecessary blocking. This paper presents a quorum-based distributed algorithm for the extended group mutual exclusion problem. The message complexity of our algorithm is O(4Q ) in the best case and O(5Q) in the worst case, where Q is a quorum size.

Keywords: Group Mutual Exclusion (GME), Extended GME, Distributed systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
25 Daemon- Based Distributed Deadlock Detection and Resolution

Authors: Z. RahimAlipour, A. T. Haghighat

Abstract:

detecting the deadlock is one of the important problems in distributed systems and different solutions have been proposed for it. Among the many deadlock detection algorithms, Edge-chasing has been the most widely used. In Edge-chasing algorithm, a special message called probe is made and sent along dependency edges. When the initiator of a probe receives the probe back the existence of a deadlock is revealed. But these algorithms are not problem-free. One of the problems associated with them is that they cannot detect some deadlocks and they even identify false deadlocks. A key point not mentioned in the literature is that when the process is waiting to obtain the required resources and its execution has been blocked, how it can actually respond to probe messages in the system. Also the question of 'which process should be victimized in order to achieve a better performance when multiple cycles exist within one single process in the system' has received little attention. In this paper, one of the basic concepts of the operating system - daemon - will be used to solve the problems mentioned. The proposed Algorithm becomes engaged in sending probe messages to the mandatory daemons and collects enough information to effectively identify and resolve multi-cycle deadlocks in distributed systems.

Keywords: Distributed system, distributed deadlock detectionand resolution, daemon, false deadlock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
24 An Analysis of Real-Time Distributed System under Different Priority Policies

Authors: Y. Jayanta Singh, Suresh C. Mehrotra

Abstract:

A real time distributed computing has heterogeneously networked computers to solve a single problem. So coordination of activities among computers is a complex task and deadlines make more complex. The performances depend on many factors such as traffic workloads, database system architecture, underlying processors, disks speeds, etc. Simulation study have been performed to analyze the performance under different transaction scheduling: different workloads, arrival rate, priority policies, altering slack factors and Preemptive Policy. The performance metric of the experiments is missed percent that is the percentage of transaction that the system is unable to complete. The throughput of the system is depends on the arrival rate of transaction. The performance can be enhanced with altering the slack factor value. Working on slack value for the transaction can helps to avoid some of transactions from killing or aborts. Under the Preemptive Policy, many extra executions of new transactions can be carried out.

Keywords: Real distributed systems, slack factors, transaction scheduling, priority policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
23 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
22 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers

Authors: Samee Ullah Khan, .C. Ardil

Abstract:

With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.

Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
21 Object Allocation with Replication in Distributed Systems

Authors: H. T. Barney, G. C. Low

Abstract:

The design of distributed systems involves dividing the system into partitions (or components) and then allocating these partitions to physical nodes. There have been several techniques proposed for both the partitioning and allocation processes. These existing techniques suffer from a number of limitations including lack of support for replication. Replication is difficult to use effectively but has the potential to greatly improve the performance of a distributed system. This paper presents a new technique technique for allocating objects in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system. The performance of the new technique is compared with the performance of an existing technique in order to demonstrate both the validity and superiority of the new technique when developing a distributed system that can utilise object replication.

Keywords: Allocation, Distributed Systems, Replication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
20 A Temporal Synchronization Model for Heterogeneous Data in Distributed Systems

Authors: Jorge Estudillo Ramirez, Saul E. Pomares Hernandez

Abstract:

Multimedia distributed systems deal with heterogeneous data, such as texts, images, graphics, video and audio. The specification of temporal relations among different data types and distributed sources is an open research area. This paper proposes a fully distributed synchronization model to be used in multimedia systems. One original aspect of the model is that it avoids the use of a common reference (e.g. wall clock and shared memory). To achieve this, all possible multimedia temporal relations are specified according to their causal dependencies.

Keywords: Multimedia, Distributed Systems, Partial Ordering, Temporal Synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
19 Interactive Model Based On an Extended CPN

Authors: Shuzhen Yao, Fengjing Zhao, Jianwei He

Abstract:

The UML modeling of complex distributed systems often is a great challenge due to the large amount of parallel real-time operating components. In this paper the problems of verification of such systems are discussed. ECPN, an Extended Colored Petri Net is defined to formally describe state transitions of components and interactions among components. The relationship between sequence diagrams and Free Choice Petri Nets is investigated. Free Choice Petri Net theory helps verifying the liveness of sequence diagrams. By converting sequence diagrams to ECPNs and then comparing behaviors of sequence diagram ECPNs and statecharts, the consistency among models is analyzed. Finally, a verification process for an example model is demonstrated.

Keywords: Consistency, liveness, Petri Net, sequence diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
18 Evaluation of Risk Attributes Driven by Periodically Changing System Functionality

Authors: Dariusz Dymek, Leszek Kotulski

Abstract:

Modeling of the distributed systems allows us to represent the whole its functionality. The working system instance rarely fulfils the whole functionality represented by model; usually some parts of this functionality should be accessible periodically. The reporting system based on the Data Warehouse concept seams to be an intuitive example of the system that some of its functionality is required only from time to time. Analyzing an enterprise risk associated with the periodical change of the system functionality, we should consider not only the inaccessibility of the components (object) but also their functions (methods), and the impact of such a situation on the system functionality from the business point of view. In the paper we suggest that the risk attributes should be estimated from risk attributes specified at the requirements level (Use Case in the UML model) on the base of the information about the structure of the model (presented at other levels of the UML model). We argue that it is desirable to consider the influence of periodical changes in requirements on the enterprise risk estimation. Finally, the proposition of such a solution basing on the UML system model is presented.

Keywords: Risk assessing, software maintenance, UML, graph grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
17 Time Comparative Simulator for Distributed Process Scheduling Algorithms

Authors: Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi Hasan, Izzatdin Abdul Aziz, Wirdhayu Mohd Wahid

Abstract:

In any distributed systems, process scheduling plays a vital role in determining the efficiency of the system. Process scheduling algorithms are used to ensure that the components of the system would be able to maximize its utilization and able to complete all the processes assigned in a specified period of time. This paper focuses on the development of comparative simulator for distributed process scheduling algorithms. The objectives of the works that have been carried out include the development of the comparative simulator, as well as to implement a comparative study between three distributed process scheduling algorithms; senderinitiated, receiver-initiated and hybrid sender-receiver-initiated algorithms. The comparative study was done based on the Average Waiting Time (AWT) and Average Turnaround Time (ATT) of the processes involved. The simulation results show that the performance of the algorithms depends on the number of nodes in the system.

Keywords: Distributed Systems, Load Sharing, Process Scheduling, AWT and ATT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
16 Harnessing Replication in Object Allocation

Authors: H. T. Barney, G. C. Low

Abstract:

The design of distributed systems involves the partitioning of the system into components or partitions and the allocation of these components to physical nodes. Techniques have been proposed for both the partitioning and allocation process. However these techniques suffer from a number of limitations. For instance object replication has the potential to greatly improve the performance of an object orientated distributed system but can be difficult to use effectively and there are few techniques that support the developer in harnessing object replication. This paper presents a methodological technique that helps developers decide how objects should be allocated in order to improve performance in a distributed system that supports replication. The performance of the proposed technique is demonstrated and tested on an example system.

Keywords: Allocation, Distributed Systems, Replication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
15 Representation of Coloured Petri Net in Abductive Logic Programming (CPN-LP) and Its Application in Modeling an Intelligent Agent

Authors: T. H. Fung

Abstract:

Coloured Petri net (CPN) has been widely adopted in various areas in Computer Science, including protocol specification, performance evaluation, distributed systems and coordination in multi-agent systems. It provides a graphical representation of a system and has a strong mathematical foundation for proving various properties. This paper proposes a novel representation of a coloured Petri net using an extension of logic programming called abductive logic programming (ALP), which is purely based on classical logic. Under such a representation, an implementation of a CPN could be directly obtained, in which every inference step could be treated as a kind of equivalence preserved transformation. We would describe how to implement a CPN under such a representation using common meta-programming techniques in Prolog. We call our framework CPN-LP and illustrate its applications in modeling an intelligent agent.

Keywords: Abduction, coloured petri net, intelligent agent, logic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131
14 An Agent Oriented Approach to Operational Profile Management

Authors: Sunitha Ramanujam, Hany El Yamany, Miriam A. M. Capretz

Abstract:

Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.

Keywords: Software reliability, Software testing, Metrics, Distributed systems, Multi-agent systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
13 A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems

Authors: Abhishek Swaroop, Awadhesh Kumar Singh

Abstract:

The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.

Keywords: Dynamic request sets, Fault tolerance, Smoothadmission, Transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
12 Performance Analysis of Load Balancing Algorithms

Authors: Sandeep Sharma, Sarabjit Singh, Meenakshi Sharma

Abstract:

Load balancing is the process of improving the performance of a parallel and distributed system through a redistribution of load among the processors [1] [5]. In this paper we present the performance analysis of various load balancing algorithms based on different parameters, considering two typical load balancing approaches static and dynamic. The analysis indicates that static and dynamic both types of algorithm can have advancements as well as weaknesses over each other. Deciding type of algorithm to be implemented will be based on type of parallel applications to solve. The main purpose of this paper is to help in design of new algorithms in future by studying the behavior of various existing algorithms.

Keywords: Load balancing (LB), workload, distributed systems, Static Load balancing, Dynamic Load Balancing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5278
11 An Edit-Distance Algorithm to Detect Correlated Attacks in Distributed Systems

Authors: Sule Simsek

Abstract:

Intrusion detection systems (IDS)are crucial components of the security mechanisms of today-s computer systems. Existing research on intrusion detection has focused on sequential intrusions. However, intrusions can also be formed by concurrent interactions of multiple processes. Some of the intrusions caused by these interactions cannot be detected using sequential intrusion detection methods. Therefore, there is a need for a mechanism that views the distributed system as a whole. L-BIDS (Lattice-Based Intrusion Detection System) is proposed to address this problem. In the L-BIDS framework, a library of intrusions and distributed traces are represented as lattices. Then these lattices are compared in order to detect intrusions in the distributed traces.

Keywords: Attack graph, distributed, edit-distance, misuse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
10 An Exploratory Environment for Concurrency Control Algorithms

Authors: Jinhua Guo

Abstract:

Designing, implementing, and debugging concurrency control algorithms in a real system is a complex, tedious, and errorprone process. Further, understanding concurrency control algorithms and distributed computations is itself a difficult task. Visualization can help with both of these problems. Thus, we have developed an exploratory environment in which people can prototype and test various versions of concurrency control algorithms, study and debug distributed computations, and view performance statistics of distributed systems. In this paper, we describe the exploratory environment and show how it can be used to explore concurrency control algorithms for the interactive steering of distributed computations.

Keywords: Consistency, Distributed Computing, InteractiveSteering, Simulation, Visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
9 Constructing of Classifier for Face Recognition on the Basis of the Conjugation Indexes

Authors: Vladimir A. Fursov, Nikita E. Kozin

Abstract:

In this work the opportunity of construction of the qualifiers for face-recognition systems based on conjugation criteria is investigated. The linkage between the bipartite conjugation, the conjugation with a subspace and the conjugation with the null-space is shown. The unified solving rule is investigated. It makes the decision on the rating of face to a class considering the linkage between conjugation values. The described recognition method can be successfully applied to the distributed systems of video control and video observation.

Keywords: Conjugation, Eigenfaces, Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
8 A Graph-Based Approach for Placement of No-Replicated Databases in Grid

Authors: Cherif Haddad, Faouzi Ben Charrada

Abstract:

On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.

Keywords: Grid computing, Distributed systems, Data resourcesmanagement, Database systems, Database placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279