Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18

Search results for: control charts

18 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: Acceptable quality level, statistical quality control, control charts, process charts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
17 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.

Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
16 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.

Keywords: Fuzzy goal programming, control charts, process capability, tablet optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 590
15 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 685
14 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T. Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: Rice polished cylinder, statistical process control, control charts, process capability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
13 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: Multivariate control chart, statistical process control, one-class classification method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
12 Asymmetric Tukey’s Control Chart Robust to Skew and Non-Skew Process Observation

Authors: S. Sukparungsee

Abstract:

In reality, the process observations are away from the assumption that are normal distributed. The observations could be skew distributions which should use an asymmetric chart rather than symmetric chart. Consequently, this research aim to study the robustness of the asymmetric Tukey’s control chart for skew and non-skew distributions as Lognormal and Laplace distributions. Furthermore, the performances in detecting of a change in parameter of asymmetric and symmetric Tukey’s control charts are compared by Average ARL (AARL). The results found that the asymmetric performs better than symmetric Tukey’s control chart for both cases of skew and non-skew process observation.

Keywords: Asymmetric control limit, average of average run length, Tukey’s control chart and skew distributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
11 An Evaluation of Average Run Length of MaxEWMA and MaxGWMA Control Charts

Authors: S. Phanyaem

Abstract:

Exponentially weighted moving average control chart (EWMA) is a popular chart used for detecting shift in the mean of parameter of distributions in quality control. The objective of this paper is to compare the efficiency of control chart to detect an increases in the mean of a process. In particular, we compared the Maximum Exponentially Weighted Moving Average (MaxEWMA) and Maximum Generally Weighted Moving Average (MaxGWMA) control charts when the observations are Exponential distribution. The criteria for evaluate the performance of control chart is called, the Average Run Length (ARL). The result of comparison show that in the case of process is small sample size, the MaxEWMA control chart is more efficiency to detect shift in the process mean than MaxGWMA control chart. For the case of large sample size, the MaxEWMA control chart is more sensitive to detect small shift in the process mean than MaxGWMA control chart, and when the process is a large shift in mean, the MaxGWMA control chart is more sensitive to detect mean shift than MaxEWMA control chart.

Keywords: Maximum Exponentially Weighted Moving Average, Maximum General Weighted Moving Average, Average Run Length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
10 Frozen Fish: Control of Glazing Operation

Authors: Tânia Manso, Luís Teixeira, Paula M. Reis Correia

Abstract:

Glazing is a process used to reduce undesirable drying or dehydration of fish during frozen or cold storage. To evaluate the effect of the time/ temperature binomial of the cryogenic frozen tunnel in the amount of glazing watera Central Composite Rotatable Design was used, with application of the Response Surface Methodology. The results reveal that the time/ temperature obtained for pink cusk-eel in experimental conditions for glazing water are similar to the industrial process, but for red fish and merluza the industrial process needs some adjustments. Control charts were established and implementedto control the amount of glazing water on sardine and merluza. They show that the freezing process was statistically controlled but there were some tendencies that must be analyzed, since the trend of sample mean values approached either of the limits, mainly in merluza. Thus, appropriate actions must be taken, in order to improve the process.

Keywords: Control charts, frozen fish, glazing, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841
9 Support Vector Machines Approach for Detecting the Mean Shifts in Hotelling-s T2 Control Chart with Sensitizing Rules

Authors: Tai-Yue Wang, Hui-Min Chiang, Su-Ni Hsieh, Yu-Min Chiang

Abstract:

In many industries, control charts is one of the most frequently used tools for quality management. Hotelling-s T2 is used widely in multivariate control chart. However, it has little defect when detecting small or medium process shifts. The use of supplementary sensitizing rules can improve the performance of detection. This study applied sensitizing rules for Hotelling-s T2 control chart to improve the performance of detection. Support vector machines (SVM) classifier to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines (SVM) classifier can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.

Keywords: Hotelling's T2 control chart, Neural networks, Sensitizing rules, Support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
8 Sensitizing Rules for Fuzzy Control Charts

Authors: N. Pekin Alakoç, A. Apaydın

Abstract:

Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.

Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947
7 Nonparametric Control Chart Using Density Weighted Support Vector Data Description

Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek

Abstract:

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
6 Nonconforming Control Charts for Zero-Inflated Poisson Distribution

Authors: N. Katemee, T. Mayureesawan

Abstract:

This paper developed the c-Chart based on a Zero- Inflated Poisson (ZIP) processes that approximated by a geometric distribution with parameter p. The p estimated that fit for ZIP distribution used in calculated the mean, median, and variance of geometric distribution for constructed the c-Chart by three difference methods. For cg-Chart, developed c-Chart by used the mean and variance of the geometric distribution constructed control limits. For cmg-Chart, the mean used for constructed the control limits. The cme- Chart, developed control limits of c-Chart from median and variance values of geometric distribution. The performance of charts considered from the Average Run Length and Average Coverage Probability. We found that for an in-control process, the cg-Chart is superior for low level of mean at all level of proportion zero. For an out-of-control process, the cmg-Chart and cme-Chart are the best for mean = 2, 3 and 4 at all level of parameter.

Keywords: average coverage probability, average run length, geometric distribution, zero-inflated poisson distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
5 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
4 Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks

Authors: Francisco Aparisi, José Sanz

Abstract:

Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.

Keywords: Multivariate quality control, Artificial Intelligence, Neural Networks, Computer Applications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
3 Multiscale Analysis and Change Detection Based on a Contrario Approach

Authors: F.Katlane, M.S.Naceur, M.A.Loghmari

Abstract:

Automatic methods of detecting changes through satellite imaging are the object of growing interest, especially beca²use of numerous applications linked to analysis of the Earth’s surface or the environment (monitoring vegetation, updating maps, risk management, etc...). This work implemented spatial analysis techniques by using images with different spatial and spectral resolutions on different dates. The work was based on the principle of control charts in order to set the upper and lower limits beyond which a change would be noted. Later, the a contrario approach was used. This was done by testing different thresholds for which the difference calculated between two pixels was significant. Finally, labeled images were considered, giving a particularly low difference which meant that the number of “false changes” could be estimated according to a given limit.

Keywords: multi-scale, a contrario approach, significantthresholds, change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
2 A Markov Chain Approximation for ATS Modeling for the Variable Sampling Interval CCC Control Charts

Authors: Y. K. Chen, K. C. Chiou, C. Y. Chen

Abstract:

The cumulative conformance count (CCC) charts are widespread in process monitoring of high-yield manufacturing. Recently, it is found the use of variable sampling interval (VSI) scheme could further enhance the efficiency of the standard CCC charts. The average time to signal (ATS) a shift in defect rate has become traditional measure of efficiency of a chart with the VSI scheme. Determining the ATS is frequently a difficult and tedious task. A simple method based on a finite Markov Chain approach for modeling the ATS is developed. In addition, numerical results are given.

Keywords: Cumulative conformance count, variable sampling interval, Markov Chain, average time to signal, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
1 Fault Detection of Drinking Water Treatment Process Using PCA and Hotelling's T2 Chart

Authors: Joval P George, Dr. Zheng Chen, Philip Shaw

Abstract:

This paper deals with the application of Principal Component Analysis (PCA) and the Hotelling-s T2 Chart, using data collected from a drinking water treatment process. PCA is applied primarily for the dimensional reduction of the collected data. The Hotelling-s T2 control chart was used for the fault detection of the process. The data was taken from a United Utilities Multistage Water Treatment Works downloaded from an Integrated Program Management (IPM) dashboard system. The analysis of the results show that Multivariate Statistical Process Control (MSPC) techniques such as PCA, and control charts such as Hotelling-s T2, can be effectively applied for the early fault detection of continuous multivariable processes such as Drinking Water Treatment. The software package SIMCA-P was used to develop the MSPC models and Hotelling-s T2 Chart from the collected data.

Keywords: Principal component analysis, hotelling's t2 chart, multivariate statistical process control, drinking water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220