Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: closed-loop power control

2 An Inductive Coupling Based CMOS Wireless Powering Link for Implantable Biomedical Applications

Authors: Lei Yao, Jia Hao Cheong, Rui-Feng Xue, Minkyu Je

Abstract:

A closed-loop controlled wireless power transmission circuit block for implantable biomedical applications is described in this paper. The circuit consists of one front-end rectifier, power management sub-block including bandgap reference and low drop-out regulators (LDOs) as well as transmission power detection / feedback circuits. Simulation result shows that the front-end rectifier achieves 80% power efficiency with 750-mV single-end peak-to-peak input voltage and 1.28-V output voltage under load current of 4 mA. The power management block can supply 1.8mA average load current under 1V consuming only 12μW power, which is equivalent to 99.3% power efficiency. The wireless power transmission block described in this paper achieves a maximum power efficiency of 80%. The wireless power transmission circuit block is designed and implemented using UMC 65-nm CMOS/RF process. It occupies 1 mm × 1.2 mm silicon area.

Keywords: Implantable biomedical devices, wireless power transfer, LDO, rectifier, closed-loop power control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
1 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi

Abstract:

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042