Search results for: biaxial loading.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 708

Search results for: biaxial loading.

708 The Effect of Stress Biaxiality on Crack Shape Development

Authors: Osama A. Terfas

Abstract:

The development of shape and size of a crack in a pressure vessel under uniaxial and biaxial loadings is important in fitness-for-service evaluations such as leak-before-break. In this work finite element modelling was used to evaluate the mean stress and the J-integral around a front of a surface-breaking crack. A procedure on the basis of ductile tearing resistance curves of high and low constrained fracture mechanics geometries was developed to estimate the amount of ductile crack extension for surface-breaking cracks and to show the evolution of the initial crack shape. The results showed non-uniform constraint levels and crack driving forces around the crack front at large deformation levels. It was also shown that initially semi-elliptical surface cracks under biaxial load developed higher constraint levels around the crack front than in uniaxial tension. However similar crack shapes were observed with more extensions associated with cracks under biaxial loading.

Keywords: biaxial load, crack shape, fracture toughness, surface crack, uniaxial load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
707 Stress Analysis of Non-persistent Rock Joints under Biaxial Loading

Authors: Omer S. Mughieda

Abstract:

Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.

Keywords: Finite element, open offset rock joint, SAP2000, biaxial loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
706 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: Biaxial bending moment strength, biaxial seismic excitation, fiber beam-column model, load contour method, strong-column-weak-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
705 Biaxial Testing of Fabrics - A Comparison of Various Testing Methodologies

Authors: O.B. Ozipek, E. Bozdag, E. Sunbuloglu, A. Abdullahoglu, E. Belen, E. Celikkanat

Abstract:

In textile industry, besides the conventional textile products, technical textile goods, that have been brought external functional properties into, are being developed for technical textile industry. Especially these products produced with weaving technology are widely preferred in areas such as sports, geology, medical, automotive, construction and marine sectors. These textile products are exposed to various stresses and large deformations under typical conditions of use. At this point, sufficient and reliable data could not be obtained with uniaxial tensile tests for determination of the mechanical properties of such products due to mainly biaxial stress state. Therefore, the most preferred method is a biaxial tensile test method and analysis. These tests and analysis is applied to fabrics with different functional features in order to establish the textile material with several characteristics and mechanical properties of the product. Planar biaxial tensile test, cylindrical inflation and bulge tests are generally required to apply for textile products that are used in automotive, sailing and sports areas and construction industry to minimize accidents as long as their service life. Airbags, seat belts and car tires in the automotive sector are also subject to the same biaxial stress states, and can be characterized by same types of experiments. In this study, in accordance with the research literature related to the various biaxial test methods are compared. Results with discussions are elaborated mainly focusing on the design of a biaxial test apparatus to obtain applicable experimental data for developing a finite element model. Sample experimental results on a prototype system are expressed.

Keywords: Biaxial Stress, Bulge Test, Cylindrical Inflation, Fabric Testing, Planar Tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4090
704 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation

Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin

Abstract:

The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.

Keywords: Biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
703 Realignment of f-actin Cytoskeleton in Osteocytes after Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, E. Babollah, B. Adu-baffour, S. P. Kotha

Abstract:

F-actin fibrils are the cytoskeleton of osteocytes. They react in a dynamic manner to mechanical loading, and strength and reposition their efforts to reinforce the cells structure. We hypothesize that f-actin is temporarly disrupted after loading and repolymerizes in a new orientation to oppose the applied load. In vitro studies are conducted to determine f-actin disruption after varying mechanical stimulus parameters that are known to affect bone formation. Results indicate that the f-actin cytoskeleton is disrupted in vitro as a function of applied mechanical stimulus parameters and that the f-actin bundles reassemble after loading induced disruption within 3 minutes after cessation of loading. The disruption of the factin cytoskeleton depends on the magnitude of stretch, the numbers of loading cycles, frequency, the insertion of rest between loading cycles and extracellular calcium. In vivo studies also demonstrate disruption of the f-actin cytoskeleton in cells embedded in the bone matrix immediately after mechanical loading. These studies suggest that adaptation of the f-actin fiber bundles of the cytoskeleton in response to applied loads occurs by disruption and subsequent repolymerization.

Keywords: Mechanical loading of osteocytes, f-actin cytoskeleton, disruption, re-polymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
702 Forming Limit Analysis of DP600-800 Steels

Authors: M. C. Cardoso, L. P. Moreira

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stressstrain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: Advanced high strength steels, forming limit curve, numerical modeling, sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405
701 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53
700 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.

As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
699 Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

Authors: V. Piscopo

Abstract:

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

Keywords: Buckling analysis, Thick plates, Biaxial stresses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
698 Effect of Mode Loading on FCRG Plate with Double Through Crack at Hole

Authors: M. Benachour, N. Benachour, M. Benguediab, A. Hadjoui

Abstract:

The knowledge of the nature of loading is very important in order to hold account on the total behavior such as vibration, shock, fatigue, etc. Fatigue present 90% of failure when loadings fatigues are very complex. In this paper a study of double through crack at hole for plate subjected to fatigue loading is presented. Various modes loading are studied where the applied load is the same one. The fatigue life is given where the effect of stress ratio is highlighted. This work is conducted on aluminum alloy 2024 T351 used for much aerospace and aeronautics applications. The fatigue crack growth behavior with constant amplitude is studied using the AFGROW code when Forman model is applied. The fatigue crack growth rate and fatigue life for different loading modes are compared with variation of others geometrical parameter such as thickness and dimensions of notch hole.

Keywords: Fatigue crack, mode loading, aluminum alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
697 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: Geogrid, Soil, Interface, Cyclic Loading, Pullout, and Large scale Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
696 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
695 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
694 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
693 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: Gypsum board, anchor, shear test, cyclic loading, load-unload curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
692 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
691 Fung’s Model Constants for Intracranial Blood Vessel of Human Using Biaxial Tensile Test Results

Authors: Mohammad Shafigh, Nasser Fatouraee, Amirsaied Seddighi

Abstract:

Mechanical properties of cerebral arteries are, due to their relationship with cerebrovascular diseases, of clinical worth. To acquire these properties, eight samples were obtained from middle cerebral arteries of human cadavers, whose death were not due to injuries or diseases of cerebral vessels, and tested within twelve hours after resection, by a precise biaxial tensile test device specially developed for the present study considering the dimensions, sensitivity and anisotropic nature of samples. The resulting stress-stretch curve was plotted and subsequently fitted to a hyperelastic three-parameter Fung model. It was found that the arteries were noticeably stiffer in circumferential than in axial direction. It was also demonstrated that the use of multi-parameter hyperelastic constitutive models is useful for mathematical description of behavior of cerebral vessel tissue. The reported material properties are a proper reference for numerical modeling of cerebral arteries and computational analysis of healthy or diseased intracranial arteries.

Keywords: Anisotropic Tissue, Cerebral Blood Vessels, Fung Model, Nonlinear Material, Plain Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
690 Elastic Strain-Concentration Factor of Notched Bars under Combined Loading of Static Tension and Pure Bending

Authors: Hitham M. Tlilan

Abstract:

The effect of notch depth on the elastic new strainconcentration factor (SNCF) of rectangular bars with single edge Unotch under combined loading is studied here. The finite element method (FEM) and super position technique are used in the current study. This new SNCF under combined loading of static tension and pure bending has been defined under triaxial stress state. The employed specimens have constant gross thickness of 16.7 mm and net section thickness varied to give net-to-gross thickness ratio ho/Ho from 0.2 to 0.95. The results indicated that the elastic SNCF for combined loading increases with increasing notch depth up to ho/Ho = 0.7 and sharply decreases with increasing notch depth. It is also indicated that the elastic SNCF of combined loading is greater than that of pure bending and less than that of the static tension for 0.2 ≤ ho/Ho ≤ 0.7. However, the elastic SNCF of combined loading is the elastic SNCF for static tension and less than that of pure bending for shallow notches (i.e. 0.8 ≤ ho/Ho ≤ 0.95).

Keywords: Bar, notch, strain, tension, bending

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
689 Material Parameter Identification of Modified AbdelKarim-Ohno Model

Authors: M. Cermak, T. Karasek, J. Rojicek

Abstract:

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Keywords: Genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
688 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, Axial Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
687 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading

Authors: M. Amiri

Abstract:

In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.

Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
686 Effect of Moisture Content and Loading Rate on Mechanical Strength of Brown Rice Varieties

Authors: I. Bagheri, M.B. Dehpour

Abstract:

The effect of moisture content and loading rate on mechanical strength of 12 brown rice grain varieties was determined. The results showed that the rupture force of brown rice grain decreased by increasing the moisture content and loading rate. The highest rupture force values was obtained at the moisture content of 8% (w.b.) and loading rate of 10 mm/min; while the lowest rupture force corresponded to the moisture content of 14% (w.b.) and loading rate of 15 mm/min. The 12 varieties were divided into three groups, namely local short grain varieties, local long grain varieties and improved long grain varieties. It was observed that the rupture strength of the three groups were statistically different from each other (P<0.01). It was revealed that the brown rice rupture at lower levels of moisture content was in the form of sudden failure with less deformation; while at higher levels of moisture content the grain rupture was in the form of gradually crushing with more deformation.

Keywords: Brown rice, loading rate, moisture content, ruptureforce

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
685 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens

Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi

Abstract:

Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.

Keywords: Brittleness, loading rate, acoustic emission, tensile fracture, shear fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
684 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin

Authors: Tasnuva Tamanna, Aimin Yu

Abstract:

Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.

Keywords: Drug loading, nanoparticles, polydopamine, rifampicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
683 Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen

Authors: M. Nikbakht, N. Choupani

Abstract:

In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).

Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
682 Preliminary Investigation on Combustion Characteristics of Rice Husk in FBC

Authors: W. Permchart, S. Tanatvanit

Abstract:

The experimental results on combustion of rice husk in a conical fluidized bed combustor (referred to as the conical FBC) using silica sand as the bed material are presented in this paper. The effects of excess combustion air and combustor loading as well as the sand bed height on the combustion pattern in FBC were investigated. Temperatures and gas concentrations (CO and NO) along over the combustor height as well as in the flue gas downstream from the ash collecting cyclone were measured. The results showed that the axial temperature profiles in FBC were explicitly affected by the combustor loading whereas the excess air and bed height were found to have minor influences on the temperature pattern. Meanwhile, the combustor loading and the excess air significantly affected the axial CO and NO concentration profiles; however, these profiles were almost independent of the bed height. The combustion and thermal efficiencies for this FBC were quantified for different operating conditions.

Keywords: Temperature, Combustor loading, Excess air, Bed height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
681 Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading

Authors: Parveen K. Saini, Tarun Agarwal

Abstract:

An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions.

Keywords: Stress Concentration Factor, Countersunk hole, Finite element, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268
680 Loading Methodology for a Capacity Constrained Job-Shop

Authors: Viraj Tyagi, Ajai Jain, P. K. Jain, Aarushi Jain

Abstract:

This paper presents a genetic algorithm based loading methodology for a capacity constrained job-shop with the consideration of alternative process plans for each part to be produced. Performance analysis of the proposed methodology is carried out for two case studies by considering two different manufacturing scenarios. Results obtained indicate that the methodology is quite effective in improving the shop load balance, and hence, it can be included in the frameworks of manufacturing planning systems of job-shop oriented industries.

Keywords: Manufacturing planning, loading, genetic algorithm, Job-Shop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
679 Nitrogen Dynamics and Removal by Algal Turf Scrubber under High Ammonia and Organic Matter Loading in a Recirculating Aquaculture System

Authors: Joshua S. Valeta, Marc C. Verdegem

Abstract:

A study was undertaken to assess the potential of an Algal Turf Scrubber to remove nitrogen from aquaculture effluent to reduce environmental pollution. High total ammonia nitrogen concentrations were introduced to an Algal Turf Scrubber developed under varying hydraulic surface loading rates of African catfish (Clarius gariepinus) effluent in a recirculating aquaculture system. Nutrient removal rates were not affected at total suspended solids concentration of up to 0.04g TSS/l (P > 0.05). Nitrogen removal rates 0.93-0.99g TAN/m²/d were recorded at very high loading rates 3.76-3.81 g TAN/m²/d. Total ammonia removal showed ½ order kinetics between 1.6 to 2.3mg/l Total Ammonia Nitrogen concentrations. Nitrogen removal increased with its loading, which increased with hydraulic surface loading rate. Total Ammonia Nitrogen removal by Algal turf scrubber was higher than reported values for fluidized bed filters and trickling filters. The algal turf scrubber also effectively removed nitrate thereby reducing the need for water exchange.

Keywords: Algal turf, loading rate, nitrogen, organic matter, removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176