Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14

Search results for: Wrapper

14 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan

Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami

Abstract:

In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.

Keywords: Integrated solid waste management, waste segregation, waste bank, community development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
13 Risk of Occupational Exposure to Cytotoxic Drugs: The Role of Handling Procedures of Hospital Workers

Authors: J. Silva, P. Arezes, R. Schierl, N. Costa

Abstract:

In order to study environmental contamination by cytostatic drugs in Portugal hospitals, sampling campaigns were conducted in three hospitals in 2015 (112 samples). Platinum containing drugs and fluorouracil were chosen because both were administered in high amounts. The detection limit was 0.01 pg/cm² for platinum and 0.1 pg/cm² for fluorouracil. The results show that spills occur mainly on the patient`s chair, while the most referenced occurrence is due to an inadequately closed wrapper. Day hospitals facilities were detected as having the largest number of contaminated samples and with higher levels of contamination.

Keywords: Antineoplastic, drugs, exposure, surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
12 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
11 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929
10 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Authors: Adel Aloraini

Abstract:

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Keywords: Causal interactions , banks, feature selection, regularizere,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
9 A Multi-Agent Framework for Data Mining

Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh

Abstract:

A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.

Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
8 Feature Selection for Breast Cancer Diagnosis: A Case-Based Wrapper Approach

Authors: Mohammad Darzi, Ali AsgharLiaei, Mahdi Hosseini, HabibollahAsghari

Abstract:

This article addresses feature selection for breast cancer diagnosis. The present process contains a wrapper approach based on Genetic Algorithm (GA) and case-based reasoning (CBR). GA is used for searching the problem space to find all of the possible subsets of features and CBR is employed to estimate the evaluation result of each subset. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer (WDBC) dataset.

Keywords: Case-based reasoning; Breast cancer diagnosis; Genetic algorithm; Wrapper feature selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
7 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
6 RFID-ready Master Data Management for Reverse Logistics

Authors: Jincheol Han, Hyunsun Ju, Jonghoon Chun

Abstract:

Sharing consistent and correct master data among disparate applications in a reverse-logistics chain has long been recognized as an intricate problem. Although a master data management (MDM) system can surely assume that responsibility, applications that need to co-operate with it must comply with proprietary query interfaces provided by the specific MDM system. In this paper, we present a RFID-ready MDM system which makes master data readily available for any participating applications in a reverse-logistics chain. We propose a RFID-wrapper as a part of our MDM. It acts as a gateway between any data retrieval request and query interfaces that process it. With the RFID-wrapper, any participating applications in a reverse-logistics chain can easily retrieve master data in a way that is analogous to retrieval of any other RFID-based logistics transactional data.

Keywords: Reverse Logistics, Master Data Management, RFID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
5 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation

Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed

Abstract:

The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.

Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
4 Federal Open Agent System Platform

Authors: Hong-Bing Wang, Zhi-Hua Fan, Chun-Dong She

Abstract:

Open Agent System platform based on High Level Architecture is firstly proposed to support the application involving heterogeneous agents. The basic idea is to develop different wrappers for different agent systems, which are wrapped as federates to join a federation. The platform is based on High Level Architecture and the advantages for this open standard are naturally inherited, such as system interoperability and reuse. Especially, the federal architecture allows different federates to be heterogeneous so as to support the integration of different agent systems. Furthermore, both implicit communication and explicit communication between agents can be supported. Then, as the wrapper RTI_JADE an example, the components are discussed. Finally, the performance of RTI_JADE is analyzed. The results show that RTI_JADE works very efficiently.

Keywords: Open Agent System, High Level Architecture, Heterogeneous Agents, Wrapper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
3 Efficient Boosting-Based Active Learning for Specific Object Detection Problems

Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof

Abstract:

In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.

Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
2 Enhancing the Peer-To-Peer Architecture with a Roaming Service and OWL

Authors: Younes Djaghloul, Zizette Boufaida

Abstract:

This paper addresses the problem of building a unified structure to describe a peer-to-peer system. Our approach uses the well-known notations in the P2P area, and provides a global architecture that puts a separation between the platform specific characteristics and the logical ones. In order to enable the navigation of the peer across platforms, a roaming layer is added. The latter provides a capability to define a unique identification of peer and assures the mapping between this identification and those used in each platform. The mapping task is assured by special wrapper. In addition, ontology is proposed to give a clear presentation of the structure of the P2P system without interesting in the content and the resource managed by the peer. The ontology is created according to the web semantic paradigm and using OWL language; so, the structure of the system is considered as a web resource.

Keywords: Peer to peer, ontology, owl.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
1 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets

Authors: R. K. Agrawal, Rajni Bala

Abstract:

Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.

Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699