Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Wormhole attacks

3 Detecting and Locating Wormhole Attacks in Wireless Sensor Networks Using Beacon Nodes

Authors: He Ronghui, Ma Guoqing, Wang Chunlei, Fang Lan

Abstract:

This paper focuses on wormhole attacks detection in wireless sensor networks. The wormhole attack is particularly challenging to deal with since the adversary does not need to compromise any nodes and can use laptops or other wireless devices to send the packets on a low latency channel. This paper introduces an easy and effective method to detect and locate the wormholes: Since beacon nodes are assumed to know their coordinates, the straight line distance between each pair of them can be calculated and then compared with the corresponding hop distance, which in this paper equals hop counts × node-s transmission range R. Dramatic difference may emerge because of an existing wormhole. Our detection mechanism is based on this. The approximate location of the wormhole can also be derived in further steps based on this information. To the best of our knowledge, our method is much easier than other wormhole detecting schemes which also use beacon nodes, and to those have special requirements on each nodes (e.g., GPS receivers or tightly synchronized clocks or directional antennas), ours is more economical. Simulation results show that the algorithm is successful in detecting and locating wormholes when the density of beacon nodes reaches 0.008 per m2.

Keywords: Wireless Sensor Network, Beacon node, worm hole attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2 Analysis of Detecting Wormhole Attack in Wireless Networks

Authors: Khin Sandar Win

Abstract:

In multi hop wireless systems, such as ad hoc and sensor networks, mobile ad hoc network applications are deployed, security emerges as a central requirement. A particularly devastating attack is known as the wormhole attack, where two or more malicious colluding nodes create a higher level virtual tunnel in the network, which is employed to transport packets between the tunnel end points. These tunnels emulate shorter links in the network. In which adversary records transmitted packets at one location in the network, tunnels them to another location, and retransmits them into the network. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In this paper, we analyze wormhole attack nature in ad hoc and sensor networks and existing methods of the defending mechanism to detect wormhole attacks without require any specialized hardware. This analysis able to provide in establishing a method to reduce the rate of refresh time and the response time to become more faster.

Keywords: Sensor Network, ad hoc network, Wormhole attack, defending mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
1 Wormhole Attack Detection in Wireless Sensor Networks

Authors: Zaw Tun, Aung Htein Maw

Abstract:

The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).

Keywords: AODV, Wormhole attacks, Wireless ad hoc andsensor networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130