Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 178

Search results for: Trees

178 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions

Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock

Abstract:

Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.

Keywords: Decision support system, event sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
177 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56
176 Evaluation of Hazardous Status of Avenue Trees in University of Port Harcourt

Authors: F. S. Eguakun, T. C. Nkwor

Abstract:

Trees in the university environment are uniquely position; however, they can also present a millstone to the infrastructure and humans they coexist with. The numerous benefits of trees can be negated due to poor tree health and anthropogenic activities and as such can become hazardous. The study aims at evaluating the hazardous status of avenue trees in University of Port Harcourt. Data were collected from all the avenue trees within the selected major roads in the University. Tree growth variables were measured and health condition of the avenue trees were assessed as an indicator of some structural defects. The hazard status of the avenue trees was determined. Several tree species were used as avenue trees in the University however, Azadirachta indica (81%) was found to be most abundant. The result shows that only 0.3% avenue tree species was found to pose severe harzard in Abuja part of the University. Most avenue trees (55.2%) were rated as medium hazard status. Due to the danger and risk associated with hazardous trees, the study recommends that good and effective management strategies be implemented so as to prevent future damages from trees with small or medium hazard status.

Keywords: Avenue tree, hazard status, inventory, urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103
175 Energy Consumption, Emission Absorption and Carbon Emission Reduction on Semarang State University Campus

Authors: Dewi Liesnoor Setyowati, Puji Hardati, Tri Marhaeni Puji Astuti, Muhammad Amin

Abstract:

Universitas Negeri Semarang (UNNES) is a university with a vision of conservation. The impact of the UNNES conservation is the existence of a positive response from the community for the effort of greening the campus and the planting of conservation value in the academic community. But in reality,  energy consumption in UNNES campus tends to increase. The objectives of the study were to analyze the energy consumption in the campus area, to analyze the absorption of emissions by trees and the awareness of UNNES citizens in reducing emissions. Research focuses on energy consumption, carbon emissions, and awareness of citizens in reducing emissions. Research subjects in this study are UNNES citizens (lecturers, students and employees). The research area covers 6 faculties and one administrative center building. Data collection is done by observation, interview and documentation. The research used a quantitative descriptive method to analyze the data. The number of trees in UNNES is 10,264. Total emission on campus UNNES is 7.862.281.56 kg/year, the tree absorption is 6,289,250.38 kg/year. In UNNES campus area there are still 1,575,031.18 kg/year of emissions, not yet absorbed by trees. There are only two areas of the faculty whose trees are capable of absorbing emissions. The awareness of UNNES citizens in reducing energy consumption is seen in change the habit of: using energy-saving equipment (65%); reduce energy consumption per unit (68%); do energy literacy for UNNES citizens (74%). UNNES leaders always provide motivation to the citizens of UNNES, to reduce and change patterns of energy consumption.

Keywords: Energy consumption, carbon emission absorption, emission reduction, energy literation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93
174 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: Goat milk, nutritional quality, bioactive compounds, sustainable production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138
173 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences

Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu

Abstract:

Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.

Keywords: nrDNA, phylogeny, taxonomy, Waterlily.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269
172 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.

Keywords: Vegetation biodiversity, species composition, traditional coal mining, caspian forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
171 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran

Authors: Sahar Elkaee Behjati

Abstract:

Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.

Keywords: Dust, leaves, uptake total carbon, tehran, tree species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
170 Analyzing Environmental Emotive Triggers in Terrorist Propaganda

Authors: Travis Morris

Abstract:

The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.

Keywords: Emotive triggers, environmental security, natural language processing, propaganda analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
169 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: Cloud storage, decision trees, diagnostic image, search, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229
168 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field

Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.

Keywords: Path planning, fastest return path, agricultural terrestrial robot, autonomous, docking station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247
167 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
166 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: Cross-validation, decision tree, lagged variables, short-term forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238
165 Exploration of an Environmentally Friendly Form of City Development Combined with a River: An Example of a Four-Dimensional Analysis Based on the Expansion of the City of Jinan across the Yellow River

Authors: Zhaocheng Shang

Abstract:

In order to study the topic of cities crossing rivers, a Four-Dimensional Analysis Method consisting of timeline, X-axis, Y-axis, and Z-axis is proposed. Policies, plans, and their implications are summarized and researched along with the timeline. The X-axis is the direction which is parallel to the river. The research area was chosen because of its important connection function. It is proposed that more surface water network should be built because of the ecological orientation of the research area. And the analysis of groundwater makes it for sure that the proposal is feasible. After the blue water network is settled, the green landscape network which is surrounded by it could be planned. The direction which is transversal to the river (Y-axis) should run through the transportation axis so that the urban texture could stretch in an ecological way. Therefore, it is suggested that the work of the planning bureau and river bureau should be coordinated. The Z-axis research is on the section view of the river, especially on the Yellow River’s special feature of being a perched river. Based on water control safety demands, river parks could be constructed on the embankment buffer zone, whereas many kinds of ornamental trees could be used to build the buffer zone. City Crossing River is a typical case where we make use of landscaping to build a symbiotic relationship between the urban landscape architecture and the environment. The local environment should be respected in the process of city expansion. The planning order of "Benefit- Flood Control Safety" should be replaced by "Flood Control Safety - Landscape Architecture- People - Benefit".

Keywords: Blue-Green landscape network, city crossing river, four-dimensional analysis method, planning order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263
164 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, World View-2, land parcels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241
163 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 634
162 Urban and Rural Children’s Knowledge on Biodiversity in Bizkaia: Tree Identification Skills and Animal and Plant Listing

Authors: Joserra Díez, Ainhoa Meñika, Iñaki Sanz-Azkue, Arritokieta Ortuzar

Abstract:

Biodiversity provides humans with a great range of ecosystemic services; it is therefore an indispensable resource and a legacy to coming generations. However, in the last decades, the increasing exploitation of the Planet has caused a great loss of biodiversity and its acquaintance has decreased remarkably; especially in urbanized areas, due to the decreasing attachment of humans to nature. Yet, the Primary Education curriculum primes the identification of flora and fauna to guarantee the knowledge of children on their surroundings, so that they care for the environment as well as for themselves. In order to produce effective didactic material that meets the needs of both teachers and pupils, it is fundamental to diagnose the current situation. In the present work, the knowledge on biodiversity of 3rd cycle Primary Education students in Biscay (n=98) and its relation to the size of the town/city of their school is discussed. Two tests have been used with such aim: one for tree identification and the other one so that the students enumerated the species of trees and animals they knew. Results reveal that knowledge of students on tree identification is scarce regardless the size of the city/town and of their school. On the other hand, animal species are better known than tree species.

Keywords: Biodiversity, population, tree identification, animal identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
161 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
160 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
159 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering

Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita

Abstract:

The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.

Keywords: Academic genealogy, advice, engineering, lattes platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
158 Inter-Specific Differences in Leaf Phenology, Growth of Seedlings of Cork OAK (Quercus suber L.), Zeen Oak (Quercus canariensis Willd.) and Their Hybrid Afares Oak (Quercus afares Pomel) in the Nursery

Authors: S. Mhamdi, O. Brendel, P. Montpied, K. Ben Yahia, N. Saouyah, B. Hasnaoui, E. Dreyer

Abstract:

Leaf Life Span (LLS) is used to classify trees into two main groups: evergreen and deciduous species. It varies according to the forms of life between taxonomic groups. Co-occurrence of deciduous and evergreen oaks is common in some Mediterranean type climate areas. Nevertheless, in the Tunisian forests, there is no enough information about the functional inter-specific diversity among oak species, especially in the mixed stand marked by the simultaneous presence of Q. suber L., Q. canariensis Willd. and their hybrid (Q. afares), the latter being an endemic oak species threatened with extinction. This study has been conducted to estimate the LLS, the relative growth rate, and the count of different growth flushes of samplings in semi-controlled conditions. Our study took 17 months, with an observation's interval of 4 weeks. The aim is to characterize and compare the hybrid species to the parental ones. Differences were observed among species, both for phenology and growth. Indeed, Q. suber saplings reached higher total height and number of growth flushes then Q. canariensis, while Q. afares showed much less growth flushes than the parental species. The LLS of parental species has exceeded the duration of the experiment, but their hybrid lost all leaves on all cohorts. The short LLSs of hybrid species are in accordance with this phenology in the field, but for Q. canariensis there was a contrast with observations in the field where phenology is strictly annual. This study allowed us to differentiate the hybrid from both parental species.

Keywords: Leaf life span, growth, hybrid, evergreen, deciduous, seedlings, Q. afares Pomel, Q. suber L., Q. canariensis Willd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470
157 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
156 Heritage Tree Expert Assessment and Classification: Malaysian Perspective

Authors: B.-Y.-S. Lau, Y.-C.-T. Jonathan, M.-S. Alias

Abstract:

Heritage trees are natural large, individual trees with exceptionally value due to association with age or event or distinguished people. In Malaysia, there is an abundance of tropical heritage trees throughout the country. It is essential to set up a repository of heritage trees to prevent valuable trees from being cut down. In this cross domain study, a web-based online expert system namely the Heritage Tree Expert Assessment and Classification (HTEAC) is developed and deployed for public to nominate potential heritage trees. Based on the nomination, tree care experts or arborists would evaluate and verify the nominated trees as heritage trees. The expert system automatically rates the approved heritage trees according to pre-defined grades via Delphi technique. Features and usability test of the expert system are presented. Preliminary result is promising for the system to be used as a full scale public system.

Keywords: Arboriculture, Delphi, expert system, heritage tree, urban forestry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
155 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment

Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto

Abstract:

Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.

Keywords: Carbon stock, forest inventory, LiDAR, tree count.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
154 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: Data mining, textile production, decision trees, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
153 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: Fruit growing, fruits trees, productivity, rural development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
152 Trees for Air Pollution Tolerance to Develop Green Belts as an Ecological Mitigation

Authors: Rahma Al Maawali, Hameed Sulaiman

Abstract:

Air pollution both from point and non-point sources is difficult to control once released in to the atmosphere. There is no engineering method known available to ameliorate the dispersed pollutants. The only suitable approach is the ecological method of constructing green belts in and around the pollution sources. Air pollution in Muscat, Oman is a serious concern due to ever increasing vehicles on roads. Identifying the air pollution tolerance levels of species is important for implementing pollution control strategies in the urban areas of Muscat. Hence, in the present study, Air Pollution Tolerance Index (APTI) for ten avenue tree species was evaluated by analyzing four bio-chemical parameters, plus their Anticipated Performance Index (API) in field conditions. Based on the two indices, Ficus benghalensis was the most suitable one with the highest performance score. Conocarpus erectuse, Phoenix dactylifera, and Pithcellobium dulce were found to be good performers and are recommended for extensive planting. Azadirachta indica which is preferred for its dense canopy is qualified in the moderate category. The rest of the tree species expressed lower API score of less than 51, hence cannot be considered as suitable species for pollution mitigation plantation projects.

Keywords: Air pollution tolerance index, avenue tree species, bio-chemical parameters, Muscat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
151 Fungi Associated with Decline of Kikar (Acacia nilotica) and Red River Gum (Eucalyptus camaldulensis) in Faisalabad

Authors: I. Ahmad, A. Hannan, S. Ahmad, M. Asif, M. F. Nawaz, M. A. Tanvir, M. F. Azhar

Abstract:

During this research, a comprehensive survey of tree growing areas of Faisalabad district of Pakistan was conducted to observe the symptoms, spectrum, occurrence and severity of A. nilotica and E. camaldulensis decline. Objective of current research was to investigate specific fungal pathogens involved in decline of A. nilotica and E. camaldulensis. For this purpose, infected roots, bark, neck portion, stem, branches, leaves and infected soils were collected to identify associated fungi. Potato dextrose agar (PDA) and Czepak dox agar media were used for isolations. Identification of isolated fungi was done microscopically and different fungi were identified. During survey of urban locations of Faisalabad, disease incidence on Kikar and Eucalyptus was recorded as 3.9-7.9% and 2.6-7.1% respectively. Survey of Agroforest zones of Faisalabad revealed decline incidence on kikar 7.5% from Sargodha road while on Satiana and Jhang road it was not planted. In eucalyptus trees, 4%, 8% and 0% disease incidence was observed on Jhang road, Sargodha road and Satiana road respectively. The maximum fungus isolated from the kikar tree was Drechslera australiensis (5.00%) from the stem part. Aspergillus flavus also gave the maximum value of (3.05%) from the bark. Alternaria alternata gave the maximum value of (2.05%) from leaves. Rhizopus and Mucor spp. were recorded minimum as compared to the Drechslera, Alternaria and Aspergillus. The maximum fungus isolated from the Eucalyptus tree was Armillaria luteobubalina (5.00%) from the stem part. The other fungi isolated were Macrophamina phaseolina and A. niger.

Keywords: Decline, frequency of mycoflora, A. nilotica, E. camaldulensis, Drechslera australiensis, Armillaria luteobubalina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
150 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
149 Evaluation of Classification Algorithms for Road Environment Detection

Authors: T. Anbu, K. Aravind Kumar

Abstract:

The road environment information is needed accurately for applications such as road maintenance and virtual 3D city modeling. Mobile laser scanning (MLS) produces dense point clouds from huge areas efficiently from which the road and its environment can be modeled in detail. Objects such as buildings, cars and trees are an important part of road environments. Different methods have been developed for detection of above such objects, but still there is a lack of accuracy due to the problems of illumination, environmental changes, and multiple objects with same features. In this work the comparison between different classifiers such as Multiclass SVM, kNN and Multiclass LDA for the road environment detection is analyzed. Finally the classification accuracy for kNN with LBP feature improved the classification accuracy as 93.3% than the other classifiers.

Keywords: Classifiers, feature extraction, mobile-based laser scanning, object location estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394