Search results for: Surge Tank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 191

Search results for: Surge Tank

191 Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Keywords: Elastic method, Flow transient, Open surge tank, Pipeline, Protection devices, Numerical model, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
190 Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Keywords: DTAAC, Flow transient, Numerical model, Pipeline system, Protection devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
189 Study on Status and Development of Hydraulic System Protection: Pump Combined With Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems (wps). When transient conditions "water hammer" exists, the life expectancy of the wps can be adversely impacted, resulting in pump and valve failures and catastrophic pipe ruptures. Transient control has become an essential requirement for ensuring safe operation of wps. An accurate analysis and suitable protection devices should be used to protect wps. This paper presents the problem of modeling and simulation of transient phenomena in wps based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occur in the transient. The developed model applied for main wps: pump combined with closed surge tank connected to a reservoir. The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow Transient, Water hammer, Pipeline System, Closed Surge Tank, Simulation Model, Protection Devices, Characteristics Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
188 Industrial Compressor Anti-Surge Computer Control

Authors: Ventzas Dimitrios, Petropoulos George

Abstract:

The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.

Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8899
187 Surge Protection of Power Supply used for Automation Devices in Power Distribution System

Authors: Liheng Ying, Guangjiong Sun

Abstract:

The intent of this essay is to evaluate the effectiveness of surge suppressor aimed at power supply used for automation devices in power distribution system which is consist of MOV and T type low-pass filter. Books, journal articles and e-sources related to surge protection of power supply used for automation devices in power distribution system were consulted, and the useful information was organized, analyzed and developed into five parts: characteristics of surge wave, protection against surge wave, impedance characteristics of target, using Matlab to simulate circuit response after 5kV,1.2/50s surge wave and suggestions for surge protection. The results indicate that various types of load situation have great impact on the effectiveness of surge protective device. Therefore, type and parameters of surge protective device need to be carefully selected, and load matching is also vital to be concerned.

Keywords: automation devices in power distribution system, MOV, surge, T type low-pass filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
186 Analysis of Lightning Surge Condition Effect on Surge Arrester in Electrical Power System by using ATP/EMTP Program

Authors: N. Mungkung, S. Wongcharoen., Tanes Tanitteerapan, C. Saejao, D. Arunyasot

Abstract:

The condition of lightning surge causes the traveling waves and the temporary increase in voltage in the transmission line system. Lightning is the most harmful for destroying the transmission line and setting devices so it is necessary to study and analyze the temporary increase in voltage for designing and setting the surge arrester. This analysis describes the figure of the lightning wave in transmission line with 115 kV voltage level in Thailand by using ATP/EMTP program to create the model of the transmission line and lightning surge. Because of the limit of this program, it must be calculated for the geometry of the transmission line and surge parameter and calculation in the manual book for the closest value of the parameter. On the other hand, for the effects on surge protector when the lightning comes, the surge arrester model must be right and standardized as metropolitan electrical authority's standard. The candidate compared the real information to the result from calculation, also. The results of the analysis show that the temporary increase in voltage value will be rise to 326.59 kV at the line which is done by lightning when the surge arrester is not set in the system. On the other hand, the temporary increase in voltage value will be 182.83 kV at the line which is done by lightning when the surge arrester is set in the system and the period of the traveling wave is reduced, also. The distance for setting the surge arrester must be as near to the transformer as possible. Moreover, it is necessary to know the right distance for setting the surge arrester and the size of the surge arrester for preventing the temporary increase in voltage, effectively.

Keywords: Lightning surge, surge arrester, electrical power system, ATP/EMTP program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
185 Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes

Authors: F. M. Mohamed, A. Y. Abdelaziz

Abstract:

The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects.

Keywords: Crude oil, fire, floating roof tank, lightning protection system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
184 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation

Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei

Abstract:

Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.

Keywords: Hammershock, IDDES, S-bend, surge signature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
183 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method

Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong

Abstract:

This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.

Keywords: Traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
182 Simulation of Surge Protection for a Direct Current Circuit

Authors: Pedro Luis Ferrer Penalver, Edmundo da Silva Braga

Abstract:

In this paper, the performance of a simple surge protection for a direct current circuit was simulated. The protection circuit was developed from modified electric macro models of a gas discharge tube and a transient voltage suppressor diode. Moreover, a combination wave generator circuit was used as source of energy surges. The simulations showed that the circuit presented ensures immunity corresponding with test level IV of the IEC 61000-4-5:2014 international standard. The developed circuit can be modified to meet the requirements of any other equipment to be protected. Similarly, the parameters of the combination wave generator can be changed to provide different surge amplitudes.

Keywords: Combination wave generator, IEC 61000-4-5, Pspice simulation, surge protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
181 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
180 CFD Simulation of Surge Wave Generated by Flow-Like Landslides

Authors: Liu-Chao Qiu

Abstract:

The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method.

Keywords: Flow-like landslide, surge wave, VOF, non-Newtonian fluids, multi-phase flows, free surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
179 CFD Study of Turbine Submergence Effects on Aeration of a Stirred Tank

Authors: Achouri Ryma, Hatem Dhaouadi, Hatem Mhiri, and Philippe Bournot

Abstract:

For many chemical and biological processes, the understanding of the mixing phenomenon and flow behavior in a stirred tank is of major importance. A three-dimensional numerical study was performed using the software Fluent, to study the flow field in a stirred tank with a Rushton turbine. In this work, we first studied the flow generated in the tank with a Rushton turbine. Then, we studied the effect of the variation of turbine’s submergence on the thermodynamic quantities defining the flow field. For that, four submergences were considered, while maintaining the same rotational speed (N =250rpm). This work intends to optimize the aeration performances of a Rushton turbine in a stirred tank.

Keywords: Aeration, CFD, Rushton turbine, mixing, submergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
178 Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles

Authors: Liu Xuedong , Liu Zhiyan

Abstract:

When the crisscross baffles and logarithmic spiral baffles are placed on the bottom of the stirred tank with elliptic bottom, using CFD software FLUENT simulates the velocity field of the stirred tank with elliptic bottom and bottom baffles. Compare the velocity field of stirred tank with bottom crisscross baffle to the velocity field of stirred tank without bottom baffle and analysis the flow pattern on the same axis-section and different cross-sections. The sizes of the axial and radial velocity are compared respectively when the stirred tank with bottom crisscross baffles, bottom logarithmic spiral baffles and without bottom baffle. At the same time, the numerical calculations of mixing power are compared when the stirred tank with bottom crisscross baffles and bottom logarithmic spiral baffles. Research shows that bottom crisscross baffles and logarithmic spiral baffles have a great impact on flow pattern within the reactor and improve the mixing effect better than without baffle. It also has shown that bottom logarithmic spiral baffles has lower power consumption than bottom crisscross baffles.

Keywords: Bottom baffle, Flow field, Numerical simulation, Stirred tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
177 Study of the Sloshing Phenomenon in a Tank Filled Partially with Liquid Using CFD Simulation

Authors: Amit Kumar, Jaikumar V., Pradeep A. G., Shivakumar Bhavi

Abstract:

Reducing sloshing is one of the major challenges in industries where transporting of liquid is involved. The present study investigates the sloshing effect for different liquid levels of 50% of the tank capacity. CFD simulation for two different baffle configurations has been carried out using a time-based multiphase Volume of fluid (VOF) scheme. Baffles were introduced to examine the sloshing effect inside the tank. Results were compared against the baseline case to assess the effectiveness of baffles; maximum liquid height over the period of the simulation was considered as the parameter for measuring the sloshing effect inside the tank. It was found that the addition of baffles reduced the sloshing effect inside the tank as compared to the baseline model.

Keywords: 3D effect of sloshing, multiphase volume of fluid, CFD, baffles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435
176 Mathematical Modeling of Storm Surge in Three Dimensional Primitive Equations

Authors: Worachat Wannawong, Usa W. HumphriesPrungchan Wongwises, Suphat Vongvisessomjai

Abstract:

The mathematical modeling of storm surge in sea and coastal regions such as the South China Sea (SCS) and the Gulf of Thailand (GoT) are important to study the typhoon characteristics. The storm surge causes an inundation at a lateral boundary exhibiting in the coastal zones particularly in the GoT and some part of the SCS. The model simulations in the three dimensional primitive equations with a high resolution model are important to protect local properties and human life from the typhoon surges. In the present study, the mathematical modeling is used to simulate the typhoon–induced surges in three case studies of Typhoon Linda 1997. The results of model simulations at the tide gauge stations can describe the characteristics of storm surges at the coastal zones.

Keywords: lateral boundary, mathematical modeling, numericalsimulations, three dimensional primitive equations, storm surge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364
175 Numerical Study of Vortex Formation inside a Stirred Tank

Authors: Divya Rajavathsavai, Akhilesh Khapre, Basudeb Munshi

Abstract:

The computational fluid dynamics (CFD) study of stirred tank with the air-water interface are carried out in the presence of different types of the impeller and with or without baffles. A multiple reference frame (MRF) approach with the volume of fluid (VOF) method is used to capture the air-water interface. The RANS (Reynolds Averaged Navier-Stokes) equations with k-ε turbulence model are solved to predict the flow behavior of water and air phase which are treated as a different phases. The predicted results have shown that the VOF method is able to capture the interface in the unbaffled tank. While, the VOF method is showing an unfeasible results in the baffled tank with high rotational impeller speed. For continuous stirred tank, the air-water interface is disturbed by the inflow and the level of water is also increased with time.

Keywords: Computational Fluid Dynamics, stirred tank, airwater interface, multiple reference frame, volume of fluid, Reynolds Averaged Navier-Stokes equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4309
174 Foundation Retrofitting of Storage Tank under Seismic Load

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade

Abstract:

The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.

Keywords: Steel tank, soil-structure, sandy soil, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
173 Experimental and CFD Investigation of Nozzle Angle in Jet Mixer

Authors: Hamid Rafiei, Reza Janamiri, Mohammad Hossein Sedaghat, Amir Hatampour

Abstract:

In this work, the results of mixing study by a jet mixer in a tank have been investigated in the laboratory scale. The tank dimensions are H/D=1 and the jet entrance have been considered in the center of upper surface of tank. RNG-k-ε model is used as the turbulent model for the prediction of the pattern of turbulent flow inside the tank. For this purpose, a tank with volume of 110 liter is simulated and it has been divided into 410,000 tetrahedral control cells for performing the calculations. The grids at the vicinity of the nozzle and suction pare are finer to get more accurate results. The experimental results showed that in a vertical jet, the lowest mixing time takes place at 35 degree. In addition, mixing time decreased by increasing the Reynolds number. Furthermore, the CFD simulation predicted the items as well a flow patterns precisely that validates the experiments.

Keywords: Jet mixer, CFD, Turbulent model, Nozzle angle, Mixing time, Reynolds Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
172 Performance Evaluation of an Aboveground LNG Storage Tank Cover using Nondestructive and Destructive Tests

Authors: Sungnam Hong, Sun-Kyu Park, Jieun Jeong, Jinwoong Choi

Abstract:

In this study, a new procedure for inspecting damages on LNG storage tanks was proposed with the use of structural diagnostic techniques: i.e., nondestructive inspection techniques such as macrography, the hammer sounding test, the Schmidt hammer test, and the ultrasonic pulse velocity test, and destructive inspection techniques such as the compressive strength test, the chloride penetration test, and the carbonation test. From the analysis of all the test results, it was concluded that the LNG storage tank cover was in good condition. Such results were also compared with the Korean concrete standard specifications and design values. In addition, the remaining life of the LNG storage tank was estimated by using existing models. Based on the results, an LNG storage tank cover performance evaluation procedure was suggested.

Keywords: Destructive test, LNG storage tank, Nondestructive test, Performance evaluation procedure, Remaining life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
171 Adaptive Fuzzy Control of a Nonlinear Tank Process

Authors: A. R. Tavakolpour-Saleh, H. Jokar

Abstract:

Liquid level control of conical tank system is known to be a great challenge in many industries such as food processing, hydrometallurgical industries and wastewater treatment plant due to its highly nonlinear characteristics. In this research, an adaptive fuzzy PID control scheme is applied to the problem of liquid level control in a nonlinear tank process. A conical tank process is first modeled and primarily simulated. A PID controller is then applied to the plant model as a suitable benchmark for comparison and the dynamic responses of the control system to different step inputs were investigated. It is found that the conventional PID controller is not able to fulfill the controller design criteria such as desired time constant due to highly nonlinear characteristics of the plant model. Consequently, a nonlinear control strategy based on gain-scheduling adaptive control incorporating a fuzzy logic observer is proposed to accurately control the nonlinear tank system. The simulation results clearly demonstrated the superiority of the proposed adaptive fuzzy control method over the conventional PID controller.

Keywords: Adaptive control, fuzzy logic, conical tank, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
170 Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Authors: Moosa Haji Abbasi, Emad Benhelal, Arshad Ahmad

Abstract:

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties.

Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents.

The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

Keywords: Tank farm, safe distance, safe layout, risk assessment, PHAST.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15577
169 Design of AC Electronics Load Surge Protection

Authors: N. Mungkung, S. Wongcharoen, C. Sukkongwari, Somchai Arunrungrasmi

Abstract:

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Keywords: Electronics Load, Transient Over Voltage, Voltage Swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
168 Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin

Authors: H. Alaleh, N. Hedayat, A. Alaleh, H. Ayazi, A. Ruhani

Abstract:

Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.

Keywords: Simple tank, Dez River, run-off, lag time, excess rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
167 Experimental Study of Fuel Tank Filling

Authors: Maurizio Mastroianni, Lou Savoni, Paul Henshaw, Gary W. Rankin

Abstract:

The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.

Keywords: experimental study, fuel tank filling, premature shutoff, spill-back

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4144
166 Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions

Authors: Fashad Amini, Lin Li

Abstract:

High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee.

Keywords: Slope stability, strength reduction method, HPTRM, levee, overtopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
165 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
164 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations

Authors: A. Sarchami, N. Ashgriz, M. Kwee

Abstract:

Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.

Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
163 CFD Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines

Authors: W. Koranuntachai, T. Chantrasmi, U. Nontakaew

Abstract:

Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.

Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
162 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart

Abstract:

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Keywords: CRA, Quadruple-Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538