Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26

Search results for: Spin

26 In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia

Authors: F. Guspi, E. García

Abstract:

This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibits robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.

Keywords: Academic Spin-Off (ASO), University Entrepreneurship, Entrepreneurial University, high growth, New Technology Based Companies (NTBC), University Spin-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
25 Spin-Dependent Transport Signatures of Bound States: From Finger to Top Gates

Authors: Yun-Hsuan Yu, Chi-Shung Tang, Nzar Rauf Abdullah, Vidar Gudmundsson

Abstract:

Spin-orbit gap feature in energy dispersion of one-dimensional devices is revealed via strong spin-orbit interaction (SOI) effects under Zeeman field. We describe the utilization of a finger-gate or a top-gate to control the spin-dependent transport characteristics in the SOI-Zeeman influenced split-gate devices by means of a generalized spin-mixed propagation matrix method. For the finger-gate system, we find a bound state in continuum for incident electrons within the ultra-low energy regime. For the top-gate system, we observe more bound-state features in conductance associated with the formation of spin-associated hole-like or electron-like quasi-bound states around band thresholds, as well as hole bound states around the reverse point of the energy dispersion. We demonstrate that the spin-dependent transport behavior of a top-gate system is similar to that of a finger-gate system only if the top-gate length is less than the effective Fermi wavelength.

Keywords: Spin-orbit, Zeeman, top-gate, finger-gate, bound state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
24 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder

Authors: Chai Mingming, Li Lei, Lu Xiaoxia

Abstract:

In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.

Keywords: Interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
23 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixed Spin-3/2 and Spin-5/2 Ferrimagnetic System

Authors: Fathi Abubrig, Mohamed Delfag, Suad M. Abuzariba

Abstract:

The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferrimagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.

Keywords: Crystal field, Ising system, Ferrimagnetic, magnetization, phase diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
22 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
21 Block Activity in Metric Neural Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions.

Keywords: Block attractor, random interaction, small world, spin glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
20 On Bounding Jayanti's Distributed Mutual Exclusion Algorithm

Authors: Awadhesh Kumar Singh

Abstract:

Jayanti-s algorithm is one of the best known abortable mutual exclusion algorithms. This work is an attempt to overcome an already known limitation of the algorithm while preserving its all important properties and elegance. The limitation is that the token number used to assign process identification number to new incoming processes is unbounded. We have used a suitably adapted alternative data structure, in order to completely eliminate the use of token number, in the algorithm.

Keywords: Abortable, deterministic, local spin, mutual exclusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
19 An Implementation of a Dual-Spin Spacecraft Attitude Reorientation Using Properties of Its Chaotic Motion

Authors: Anton V. Doroshin

Abstract:

This article contains a description of main ideas for the attitude reorientation of spacecraft (small dual-spin spacecraft, nanosatellites) using properties of its chaotic attitude motion under the action of internal perturbations. The considering method based on intentional initiations of chaotic modes of the attitude motion with big amplitudes of the nutation oscillations, and also on the redistributions of the angular momentum between coaxial bodies of the dual-spin spacecraft (DSSC), which perform in the purpose of system’s phase space changing.

Keywords: Spacecraft, Attitude Dynamics and Control, Chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
18 Development of Quasi-Two-Dimensional Nb2O5 for Functional Electrodes of Advanced Electrochemical Systems

Authors: S. Zhuiykov, E. Kats

Abstract:

In recent times there has been a growing interest in the development of quasi-two-dimensional niobium pentoxide (Nb2O5) as a semiconductor for the potential electronic applications such as capacitors, filtration, dye-sensitised solar cells and gas sensing platforms. Therefore once the purpose is established, Nb2O5 can be prepared in a number of nano- and sub-micron-structural morphologies that include rods, wires, belts and tubes. In this study films of Nb2O5 were prepared on gold plated silicon substrate using spin-coating technique and subsequently by mechanical exfoliation. The reason this method was employed was to achieve layers of less than 15nm in thickness. The sintering temperature of the specimen was 800oC. The morphology and structural characteristics of the films were analyzed by Atomic Force Microscopy (AFM), Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS).

Keywords: Mechanical exfoliation, niobium pentoxide, quazitwo- dimensional, semiconductor, sol-gel, spin-coating, two dimensional semiconductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
17 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
16 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
15 Spin Coherent State Path Integral for the Interaction of Two-Level System with Time Dependent Non-Uniform Magnetic Field

Authors: Rekik Rima, Aouachria Mekki

Abstract:

We study the movement of a two-level atom in interaction with time dependent nonuniform magnetic filed using the path integral formalism. The propagator is first written in the standard form by replacing the spin by a unit vector aligned along the polar and azimuthal directions. Then it is determined exactly using perturbation methods. Thus the Rabi formula of the system are deduced.

Keywords: Path integral, Formalism, Propagator, Transition probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
14 Treatment of Spin-1/2 Particle in Interaction with a Time-Dependent Magnetic Field by the Fermionic Coherent-State Path-Integral Formalism

Authors: Aouachria Mekki

Abstract:

We consider a spin-1/2 particle interacting with a time-dependent magnetic field using path integral formalism. The propagator is first of all written in the standard form replacing the spin by two fermionic oscillators via the Schwinger model. The propagator is then exactly determined, thanks to a simple transformation, and the transition probability is deduced.

Keywords: Path integral, formalism, Propagator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
13 Investigation of Temperature-Dependent Electrical Properties of Tc-CuPc: PCBM Bulk Heterojunction (BHJ) under Dark Conditions

Authors: Shahid M. Khan, Muhammad H. Sayyad

Abstract:

An organic bulk heterojunction (BHJ) was fabricated using a blended film containing Copper (II) tetrakis(4-acumylphenoxy) phthalocyanine (Tc-CuPc) along with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM). Weight ratio between Tc-CuPc and PCBM was 1:1. The electrical properties of Tc-CuPc: PCBM BHJ were examined. Rectifying nature of the BHJ was displayed by current-voltage (I-V) curves, recorded in dark and at various temperatures. At low voltages, conduction was ohmic succeeded by space-charge limiting current (SCLC) conduction at higher voltages in which exponential trap distribution was dominant. Series resistance, shunt resistance, ideality factor, effective barrier height and mobility at room temperature were found to be 526 4, 482 k4, 3.7, 0.17 eV and 2×10-7 cm2V-1s-1 respectively. Temperature effect towards different BHJ parameters was observed under dark condition.

Keywords: Bulk heterojunction, PCBM, phthalocyanine, spin coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
12 MRI Reconstruction Using Discrete Fourier Transform: A tutorial

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.

Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
11 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
10 The Influence of Doping of Fullerene Derivative (PCBM) on the Optical Properties of Vanadyl Phthalocyanine (VOPc)

Authors: Fakhra Aziz, K. Sulaiman, Kh. S. Karimov, M. Hassan Sayyad

Abstract:

This paper presents a spectroscopic study on doping of Vanadyl pathalocyanine (VOPc) by [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The films are characterized by UV/Vis/NIR spectroscopy. A drastic increase in the absorption coefficient has been observed with increasing dopant concentration. Optical properties of VOPc:PCBM films deposited by spin coating technique were studied in detail. Optical band gap decreased with the PCBM incorporation in the VOPc film. Optical band gap calculated from the absorption spectra decreased from 3.32 eV to 3.26 eV with a variation of 0–75 % of PCBM concentration in the VOPC films.

Keywords: Optical properties, spin-coating, optical properties, optical energy gap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
9 Simulations of Routing Protocols of Wireless Sensor Networks

Authors: Kristoffer Clyde Magsino, H. Srikanth Kamath

Abstract:

Wireless Sensor Network is widely used in electronics. Wireless sensor networks are now used in many applications including military, environmental, healthcare applications, home automation and traffic control. We will study one area of wireless sensor networks, which is the routing protocol. Routing protocols are needed to send data between sensor nodes and the base station. In this paper, we will discuss two routing protocols, such as datacentric and hierarchical routing protocol. We will show the output of the protocols using the NS-2 simulator. This paper will compare the simulation output of the two routing protocol using Nam. We will simulate using Xgraph to find the throughput and delay of the protocol.

Keywords: data-centric routing protocol, hierarchical routingprotocol, Nam, NS-2, Routing Protocol, sensor nodes, SPIN, throughput, Xgraph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
8 Magnetic Properties of NiO and MnO by LSDA+U

Authors: Chewa Thassana, Wicharn Techitdheera

Abstract:

The spin (ms) and orbital (mo) magnetic moment of the antiferromagnetic NiO and MnO have been studied in the local spin density approximation (LSDA+U) within full potential linear muffin-tin orbital (FP-LMTO method with in the coulomb interaction U varying from 0 to 10eV, exchange interaction J, from 0 to 1.0eV, and volume compression VC in range of 0 to 80%. Our calculated results shown that the spin magnetic moments and the orbital magnetic moments increase linearly with increasing U and J. While the interesting behaviour appears when volume compression is greater than 70% for NiO and 50% for MnO at which ms collapses. Further increase of volume compression to be at 80% leads to the disappearance of both magnetic moments.

Keywords: spin-orbital magnetic moment, Coulomb interaction U and exchange interaction J, volume compression VC, LSDA+U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
7 The Impact of Bayh-Dole Act on Knowledge Transfer in the States and a Study on Applicability in Turkey

Authors: Murat Sengoz, Mustafa Kemal Topcu

Abstract:

This study aims to contribute to efforts of Turkey to increase research and development to overcome mid-income level trap by discussing regulations on patenting and licensing. Knowledge and technology transfer from universities to business world is attached great significance to increase innovation. Through literature survey, it is observed that the States accomplished to boost the economy and increase welfare by the Bayh-Dole Act enacted in 1980. Thus, this good practice is imitated by other nations to make technological developments. The Act allows universities to acquire patent right in research programs funded by government to increase technology transfer from universities whilst motivating real sector to use research pools in the universities. An act similar with Bayh-Dole could be beneficial to Turkey since efforts in Turkey are to promote research, development and innovation. Towards this end, the impact of Bayh-Dole Act on the patent system for universities in the Sates is deliberately examined, applicability in Turkey is discussed. However, it is conceded that success rate of applying Bayh-Dole Act in Turkey would be low once Turkey mainly differs from the States regarding social, economic and cultural traits.

Keywords: Bayh-Dole act, knowledge transfer, license, patent, spin-off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
6 Spin One Hawking Radiation from Dirty Black Holes

Authors: Petarpa Boonserm, Tritos Ngampitipan, Matt Visser

Abstract:

A “clean” black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a “dirty black hole”. In this paper, the effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the greybody factor of a dirty black hole to be less than that of a clean black hole.

Keywords: A dirty black hole, Greybody factor, Hawking radiation, Matter fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
5 Performance Analysis of Routing Protocol for WSN Using Data Centric Approach

Authors: A. H. Azni, Madihah Mohd Saudi, Azreen Azman, Ariff Syah Johari

Abstract:

Sensor Network are emerging as a new tool for important application in diverse fields like military surveillance, habitat monitoring, weather, home electrical appliances and others. Technically, sensor network nodes are limited in respect to energy supply, computational capacity and communication bandwidth. In order to prolong the lifetime of the sensor nodes, designing efficient routing protocol is very critical. In this paper, we illustrate the existing routing protocol for wireless sensor network using data centric approach and present performance analysis of these protocols. The paper focuses in the performance analysis of specific protocol namely Directed Diffusion and SPIN. This analysis reveals that the energy usage is important features which need to be taken into consideration while designing routing protocol for wireless sensor network.

Keywords: Data Centric Approach, Directed Diffusion, SPIN WSN Routing Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
4 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
3 Effect of Exchange Interaction J on Magnetic Moment of MnO

Authors: C. Thassana, W. Techitdheera

Abstract:

This calculation focus on the effect of exchange interaction J and Coulomb interaction U on spin magnetic moments (ms) of MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to J and U. The relevant results exhibited the increasing spin magnetic moments with increasing exchange interaction and Coulomb interaction. Furthermore, equations of spin magnetic moment, which h good correspondence to the experimental data 4.58μB, are defined ms = 0.11J +4.52μB and ms = 0.03U+4.52μB. So, the relation of J and U parameter is obtained, it is obviously, J = -0.249U+1.346 eV.

Keywords: exchange interaction J, the Coulomb interaction U, spin magnetic moment, LSDA+U, MnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
2 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: Atomic matters, crystal electric field, spin-orbit coupling, localized states, electron subshell, fine electronic structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Application of Formal Methods for Designing a Separation Kernel for Embedded Systems

Authors: Kei Kawamorita, Ryouta Kasahara, Yuuki Mochizuki, Kenichiro Noguchi

Abstract:

A separation-kernel-based operating system (OS) has been designed for use in secure embedded systems by applying formal methods to the design of the separation-kernel part. The separation kernel is a small OS kernel that provides an abstract distributed environment on a single CPU. The design of the separation kernel was verified using two formal methods, the B method and the Spin model checker. A newly designed semi-formal method, the extended state transition method, was also applied. An OS comprising the separation-kernel part and additional OS services on top of the separation kernel was prototyped on the Intel IA-32 architecture. Developing and testing of a prototype embedded application, a point-of-sale application, on the prototype OS demonstrated that the proposed architecture and the use of formal methods to design its kernel part are effective for achieving a secure embedded system having a high-assurance separation kernel.

Keywords: B method, embedded systems, extended state transition, formal methods, separation kernel, Spin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF