Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16

Search results for: Soil improvement

16 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns

Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem

Abstract:

The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.

Keywords: Bearing capacity, cement dust – lime columns, ground improvement, soft clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236
15 Numerical Evaluation of Lateral Bearing Capacity of Piles in Cement-Treated Soils

Authors: Reza Ziaie Moayed, Saeideh Mohammadi

Abstract:

Soft soil is used in many of civil engineering projects like coastal, marine and road projects. Because of low shear strength and stiffness of soft soils, large settlement and low bearing capacity will occur under superstructure loads. This will make the civil engineering activities more difficult and costlier. In the case of soft soils, improvement is a suitable method to increase the shear strength and stiffness for engineering purposes. In recent years, the artificial cementation of soil by cement and lime has been extensively used for soft soil improvement. Cement stabilization is a well-established technique for improving soft soils. Artificial cementation increases the shear strength and hardness of the natural soils. On the other hand, in soft soils, the use of piles to transfer loads to the depths of ground is usual. By using cement treated soil around the piles, high bearing capacity and low settlement in piles can be achieved. In the present study, lateral bearing capacity of short piles in cemented soils is investigated by numerical approach. For this purpose, three dimensional (3D) finite difference software, FLAC 3D is used. Cement treated soil has a strain hardening-softening behavior, because of breaking of bonds between cement agent and soil particle. To simulate such behavior, strain hardening-softening soil constitutive model is used for cement treated soft soil. Additionally, conventional elastic-plastic Mohr Coulomb constitutive model and linear elastic model are used for stress-strain behavior of natural soils and pile. To determine the parameters of constitutive models and also for verification of numerical model, the results of available triaxial laboratory tests on and insitu loading of piles in cement treated soft soil are used. Different parameters are considered in parametric study to determine the effective parameters on the bearing of the piles on cemented treated soils. In the present paper, the effect of various length and height of the artificial cemented area, different diameter and length of the pile and the properties of the materials are studied. Also, the effect of choosing a constitutive model for cemented treated soils in the bearing capacity of the pile is investigated.

Keywords: Cement-treated soils, pile, lateral capacity, FLAC 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
14 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns

Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar

Abstract:

Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.

Keywords: Concrete damaged plasticity, ground improvement, load bearing capacity, pervious concrete pile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
13 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: Bearing capacity, FLAC3D, geosynthetic, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
12 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand

Authors: S. A. Naeini, M. Hamidzadeh

Abstract:

Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.

Keywords: Soil improvement, silty sand, micropiles, SPT, PLT, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
11 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil

Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani

Abstract:

Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.

Keywords: Soil improvement, waste bottle chips, reinforcement, silt, Triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
10 The Effect of Pulling and Rotation Speed on the Jet Grout Columns

Authors: İbrahim Hakkı Erkan, Özcan Tan

Abstract:

The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.

Keywords: Jet grout, sandy soils, soil improvement, soilcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
9 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: Bamboo chips, permeability, mechanical properties, triaxial compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
8 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
7 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M.Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: Soft foundation soil, bearing capacity, bridge ramps, soil improvement, PCC piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
6 Improvement of Deficient Soils in Nigeria Using Bagasse Ash: A Review

Authors: Musa Alhassan, Alhaji Mohammed Mustapha

Abstract:

Review of studies carried out on the use of bagasse ash for the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizers (cement and lime), the studies generally showed improvement in the geotechnical properties of the soils, either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils, thus suggesting that using this material at large scale level in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria.

Keywords: Bagasse ash, Black cotton soil, Deficient soil, Laterite, Soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
5 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii

Abstract:

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4945
4 Soil Improvement using Cement Dust Mixture

Authors: Mohie Eldin Mohamed Afifiy Elmashad

Abstract:

Day by day technology increases and problems associated with this technology also increase. Several researches were carried out to investigate the deployment of such material safely in geotechnical engineering in particular and civil engineering in general. However, different types of waste material have such as cement duct, fly ash and slag been proven to be suitable in several applications. In this research cement dust mixed with different percentages of sand will be used in some civil engineering application as will be explained later in this paper throughout filed and laboratory test. The used mixer (waste material with sand) prove high performance, durability to environmental condition, low cost and high benefits. At higher cement dust ratio, small cement ratio is valuable for compressive strength and permeability. Also at small cement dust ratio higher cement ratio is valuable for compressive strength.

Keywords: cement dust, cement, soil improvement, permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
3 Using Low Permeability Sand-Fadr Mixture Membrane for Isolated Swelling Soil

Authors: Mohie Eldin Mohamed Afifiy Elmashad

Abstract:

Desert regions around the Nile valley in Upper Egypt contain great extent of swelling soil. Many different comment procedures of treatment of the swelling soils for construction such as pre-swelling, load balance OR soil replacement. One of the measure factors which affect the level of the aggressiveness of the swelling soil is the direction of the infiltration water directions within the swelling soils. In this paper a physical model was installed to measure the effect of water on the swelling soil with replacement using fatty acid distillation residuals (FADR) mixed with sand as thick sand-FADR mixture to prevent the water pathway arrive to the swelling soil. Testing program have been conducted on different artificial samples with different sand to FADR contents ratios (4%, 6%, and 9%) to get the optimum value fulfilling the impermeable replacement. The tests show that a FADR content of 9% is sufficient to produce impermeable replacement.

Keywords: Swelling soil, FADR, soil improvement, permeability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
2 Effect of Different Fertilization Methods on Soil Biological Indexes

Authors: Khosro Mohammadi

Abstract:

Fertilization plays an important role in crop growth and soil improvement. This study was conducted to determine the best fertilization system for wheat production. Experiments were arranged in a complete block design with three replications in two years. Main plots consisted of six methods of fertilization including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control were arranged in sub plots. The addition of compost or farm yard manure significantly increased the soil microbial biomass carbon in comparison to the chemical fertilizer. The dehydrogenase, phosphatase and urease activities in the N3 treatment were significantly lower than in the farm yard manure and compost treatments.

Keywords: Enzyme activity, fertilization, microbial biomasscarbon, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
1 Gypseous Soil Improvement using Fuel Oil

Authors: Hussein Yousif Aziz, Jianlin Ma

Abstract:

This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.

Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075