Search results for: Rad-hard FPGAs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19

Search results for: Rad-hard FPGAs

19 Analysis of CNT Bundle and its Comparison with Copper for FPGAs Interconnects

Authors: Kureshi Abdul Kadir, Mohd. Hasan

Abstract:

Each new semiconductor technology node brings smaller transistors and wires. Although this makes transistors faster, wires get slower. In nano-scale regime, the standard copper (Cu) interconnect will become a major hurdle for FPGA interconnect due to their high resistivity and electromigration. This paper presents the comprehensive evaluation of mixed CNT bundle interconnects and investigates their prospects as energy efficient and high speed interconnect for future FPGA routing architecture. All HSPICE simulations are carried out at operating frequency of 1GHz and it is found that mixed CNT bundle implemented in FPGAs as interconnect can potentially provide a substantial delay and energy reduction over traditional interconnects at 32nm process technology.

Keywords: CMOS, Copper Interconnect, Mixed CNT Bundle Interconnect, FPGAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
18 Optimized Multiplier Based upon 6-Input Luts and Vedic Mathematics

Authors: Zulhelmi Zakaria, Shuja A. Abbasi

Abstract:

A new approach has been used for optimized design of multipliers based upon the concepts of Vedic mathematics. The design has been targeted to state-of-the art field-programmable gate arrays (FPGAs). The multiplier generates partial products using Vedic mathematics method by employing basic 4x4 multipliers designed by exploiting 6-input LUTs and multiplexers in the same slices resulting in drastic reduction in area. The multiplier is realized on Xilinx FPGAs using devices Virtex-5 and Virtex-6.Carry Chain Adder was employed to obtain final products. The performance of the proposed multiplier was examined and compared to well-known multipliers such as Booth, Carry Save, Carry ripple, and array multipliers. It is demonstrated that the proposed multiplier is superior in terms of speed as well as power consumption.

Keywords: Multiplier, Vedic Mathematics, LUTs, FPGAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
17 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array

Authors: Rehab Abdullah Shendi

Abstract:

The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.

Keywords: Customisation, FPGA, MIPS, partial reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
16 The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission

Authors: M. Focardi, M. Pancrazzi, M. Uslenghi, G. Nicolini, E. Magli, F. Landini, M. Romoli, A. Bemporad, E. Antonucci, S. Fineschi, G. Naletto, P. Nicolosi, D. Spadaro, V. Andretta

Abstract:

METIS is the Multi Element Telescope for Imaging and Spectroscopy, a Coronagraph aboard the European Space Agency-s Solar Orbiter Mission aimed at the observation of the solar corona via both VIS and UV/EUV narrow-band imaging and spectroscopy. METIS, with its multi-wavelength capabilities, will study in detail the physical processes responsible for the corona heating and the origin and properties of the slow and fast solar wind. METIS electronics will collect and process scientific data thanks to its detectors proximity electronics, the digital front-end subsystem electronics and the MPPU, the Main Power and Processing Unit, hosting a space-qualified processor, memories and some rad-hard FPGAs acting as digital controllers.This paper reports on the overall METIS electronics architecture and data processing capabilities conceived to address all the scientific issues as a trade-off solution between requirements and allocated resources, just before the Preliminary Design Review as an ESA milestone in April 2012.

Keywords: Solar Coronagraph, Data Processing Electronics, VIS and UV/EUV Detectors, LEON Processor, Rad-hard FPGAs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
15 Digital Filter for Cochlear Implant Implemented on a Field- Programmable Gate Array

Authors: Rekha V. Dundur , M.V.Latte, S.Y. Kulkarni, M.K.Venkatesha

Abstract:

The advent of multi-million gate Field Programmable Gate Arrays (FPGAs) with hardware support for multiplication opens an opportunity to recreate a significant portion of the front end of a human cochlea using this technology. In this paper we describe the implementation of the cochlear filter and show that it is entirely suited to a single device XC3S500 FPGA implementation .The filter gave a good fit to real time data with efficiency of hardware usage.

Keywords: Cochlea, FPGA, IIR (Infinite Impulse Response), Multiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
14 Simulation Tools for Fixed Point DSP Algorithms and Architectures

Authors: K. B. Cullen, G. C. M. Silvestre, N. J. Hurley

Abstract:

This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.

Keywords: DSP devices, DSP algorithm, simulation model, software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
13 Modified Montgomery for RSA Cryptosystem

Authors: Rupali Verma, Maitreyee Dutta, Renu Vig

Abstract:

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

Keywords: RSA, Montgomery modular multiplication, 4:2 compressor, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
12 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
11 Towards Self-ware via Swarm-Array Computing

Authors: Blesson Varghese, Gerard McKee

Abstract:

The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.

Keywords: Swarm-Array computing, Autonomic computing, landscapes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
10 FPGA Based Implementation of Simplified Space Vector PWM Algorithm for Multilevel Inverter Fed Induction Motor Drives

Authors: Tapan Trivedi, Pramod Agarwal, Rajendrasinh Jadeja, Pragnesh Bhatt

Abstract:

Space Vector Pulse Width Modulation is popular for variable frequency drives. The method has several advantages over carried based PWM and is computation intensive. The implementation of SVPWM for multilevel inverter requires special attention and at the same time consumes considerable resources. Due to faster processing power and reduced over all computational burden, FPGAs are being investigated as an alternative for other controllers. In this paper, a space vector PWM algorithm is implemented using FPGA which requires less computational area and is modular in structure. The algorithm is verified experimentally for Neutral Point Clamped inverter using FPGA development board xc3s5000-4fg900.

Keywords: Modular structure, Multilevel inverter, Space Vector PWM, Switching States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
9 64 bit Computer Architectures for Space Applications – A study

Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy

Abstract:

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
8 Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded Systems

Authors: M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, R.Tourki

Abstract:

Long number multiplications (n ≥ 128-bit) are a primitive in most cryptosystems. They can be performed better by using Karatsuba-Ofman technique. This algorithm is easy to parallelize on workstation network and on distributed memory, and it-s known as the practical method of choice. Multiplying long numbers using Karatsuba-Ofman algorithm is fast but is highly recursive. In this paper, we propose different designs of implementing Karatsuba-Ofman multiplier. A mixture of sequential and combinational system design techniques involving pipelining is applied to our proposed designs. Multiplying large numbers can be adapted flexibly to time, area and power criteria. Computationally and occupation constrained in embedded systems such as: smart cards, mobile phones..., multiplication of finite field elements can be achieved more efficiently. The proposed designs are compared to other existing techniques. Mathematical models (Area (n), Delay (n)) of our proposed designs are also elaborated and evaluated on different FPGAs devices.

Keywords: finite field, Karatsuba-Ofman, long numbers, multiplication, mathematical model, recursivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
7 Digital Encoder Based Power Frequency Deviation Measurement

Authors: Syed Javed Arif, Mohd Ayyub Khan, Saleem Anwar Khan

Abstract:

In this paper, a simple method is presented for measurement of power frequency deviations. A phase locked loop (PLL) is used to multiply the signal under test by a factor of 100. The number of pulses in this pulse train signal is counted over a stable known period, using decade driving assemblies (DDAs) and flip-flops. These signals are combined using logic gates and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded. These pulses are equally suitable for both control applications and display units. The experimental circuit developed gives a resolution of 1 Hz within the measurement period of 20 ms. The proposed circuit is also simulated in Verilog Hardware Description Language (VHDL) and implemented using Field Programing Gate Arrays (FPGAs). A Mixed signal Oscilloscope (MSO) is used to observe the results of FPGA implementation. These results are compared with the results of the proposed circuit of discrete components. The proposed system is useful for frequency deviation measurement and control in power systems.

Keywords: Frequency measurement, digital control, phase locked loop, encoding, Verilog HDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
6 FPGA Based Longitudinal and Lateral Controller Implementation for a Small UAV

Authors: Hafiz ul Azad, Dragan V.Lazic, Waqar Shahid

Abstract:

This paper presents implementation of attitude controller for a small UAV using field programmable gate array (FPGA). Due to the small size constrain a miniature more compact and computationally extensive; autopilot platform is needed for such systems. More over UAV autopilot has to deal with extremely adverse situations in the shortest possible time, while accomplishing its mission. FPGAs in the recent past have rendered themselves as fast, parallel, real time, processing devices in a compact size. This work utilizes this fact and implements different attitude controllers for a small UAV in FPGA, using its parallel processing capabilities. Attitude controller is designed in MATLAB/Simulink environment. The discrete version of this controller is implemented using pipelining followed by retiming, to reduce the critical path and thereby clock period of the controller datapath. Pipelined, retimed, parallel PID controller implementation is done using rapidprototyping and testing efficient development tool of “system generator", which has been developed by Xilinx for FPGA implementation. The improved timing performance enables the controller to react abruptly to any changes made to the attitudes of UAV.

Keywords: Field Programmable gate array (FPGA), Hardwaredescriptive Language (HDL), PID, Pipelining, Retiming, XilinxSystem Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129
5 An Efficient Architecture for Interleaved Modular Multiplication

Authors: Ahmad M. Abdel Fattah, Ayman M. Bahaa El-Din, Hossam M.A. Fahmy

Abstract:

Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.

Keywords: Montgomery multiplication, modular multiplication, efficient architecture, FPGA, RSA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
4 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate

Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue

Abstract:

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Keywords: Atmospheric turbulence, haze, soft switching, Raptor codes, refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
3 Spacecraft Neural Network Control System Design using FPGA

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

Keywords: Spacecraft, neural network, FPGA, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
2 A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Authors: Kostas Siozios, Dimitrios Soudris, Antonios Thanailakis

Abstract:

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Keywords: Design Methodology, FPGA, Interconnection, Low-Energy, High-Performance, CAD tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
1 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644