Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Persian Language

4 Investigating Medical Students’ Perspectives toward University Teachers’ Talking Features in an English as a Foreign Language Context in Urmia, Iran

Authors: Ismail Baniadam, Nafisa Tadayyon, Javid Fereidoni

Abstract:

This study aimed to investigate medical students’ attitudes toward some teachers’ talking features regarding their gender in the Iranian context. To do so, 60 male and 60 female medical students of Urmia University of Medical Sciences (UMSU) participated in the research. A researcher made Likert-type questionnaire which was initially piloted and was used to gather the data. Comparing the four different factors regarding the features of teacher talk, it was revealed that visual and extra-linguistic information factor, Lexical and syntactic familiarity, Speed of speech, and the use of Persian language had the highest to the lowest mean score, respectively. It was also indicated that female students rather than male students were significantly more in favor of speed of speech and lexical and syntactic familiarity.

Keywords: Attitude, gender, medical student, teacher talk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392
3 Autistic Children and Different Tense Forms

Authors: Ameneh Zare, Shahin Nematzadeh, Shahla Raghibdoust, Iran Kalbassi

Abstract:

Autism spectrum disorder is characterized by abnormalities in social communication, language abilities and repetitive behaviors. The present study focused on some grammatical deficits in autistic children. We evaluated the impairment of correct use of different Persian verb tenses in autistic children-s speech. Two standardized Language Test were administered then gathered data were analyzed. The main result of this study was significant difference between the mean scores of correct responses to present tense in comparison with past tense in Persian language. This study demonstrated that tense is severely impaired in autistic children-s speech. Our findings indicated those autistic children-s production of simple present/ past tense opposition to be better than production of future and past periphrastic forms (past perfect, present perfect, past progressive).

Keywords: Autism, Past, Persian Language, Present, Tense

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
2 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri

Abstract:

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1 Application of Smooth Ergodic Hidden Markov Model in Text to Speech Systems

Authors: Armin Ghayoori, Faramarz Hendessi, Asrar Sheikh

Abstract:

In developing a text-to-speech system, it is well known that the accuracy of information extracted from a text is crucial to produce high quality synthesized speech. In this paper, a new scheme for converting text into its equivalent phonetic spelling is introduced and developed. This method is applicable to many applications in text to speech converting systems and has many advantages over other methods. The proposed method can also complement the other methods with a purpose of improving their performance. The proposed method is a probabilistic model and is based on Smooth Ergodic Hidden Markov Model. This model can be considered as an extension to HMM. The proposed method is applied to Persian language and its accuracy in converting text to speech phonetics is evaluated using simulations.

Keywords: Hidden Markov Models, text, synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201