Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17

Search results for: Parallel computation

17 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: classification, Deep learning, cellular automata, neural cellular automata

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147
16 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: Clustering, MATLAB, K-means algorithm, parallel computations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
15 Implementation of ADETRAN Language Using Message Passing Interface

Authors: Akiyoshi Wakatani

Abstract:

This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.

Keywords: Iterative methods, array redistribution, translator, distributed memory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
14 Modified Montgomery for RSA Cryptosystem

Authors: Rupali Verma, Maitreyee Dutta, Renu Vig

Abstract:

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

Keywords: FPGA, RSA, montgomery modular multiplication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
13 Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs with Time-lapse Seismic Data

Authors: Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink

Abstract:

In this paper we describe the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir history matching problem. The use of large number of observations from time-lapse seismic leads to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. For efficient parallelization it is important to consider parallel computation at the analysis step. Our experiments show that parallelization of the analysis step in addition to the forecast step has good scalability, exploiting the same set of resources with some additional efforts.

Keywords: Parallel Computing, Data Assimilation, EnKF, Parallel efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
12 Parallel-Distributed Software Implementation of Buchberger Algorithm

Authors: Praloy Kumar Biswas, Prof. Dipanwita Roy Chowdhury

Abstract:

Grobner basis calculation forms a key part of computational commutative algebra and many other areas. One important ramification of the theory of Grobner basis provides a means to solve a system of non-linear equations. This is why it has become very important in the areas where the solution of non-linear equations is needed, for instance in algebraic cryptanalysis and coding theory. This paper explores on a parallel-distributed implementation for Grobner basis calculation over GF(2). For doing so Buchberger algorithm is used. OpenMP and MPI-C language constructs have been used to implement the scheme. Some relevant results have been furnished to compare the performances between the standalone and hybrid (parallel-distributed) implementation.

Keywords: MPI, OpenMP, Grobner basis, Buchberger Algorithm, Distributed- Parallel Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
11 Game-Tree Simplification by Pattern Matching and Its Acceleration Approach using an FPGA

Authors: Suguru Ochiai, Toru Yabuki, Yoshiki Yamaguchi, Yuetsu Kodama

Abstract:

In this paper, we propose a Connect6 solver which adopts a hybrid approach based on a tree-search algorithm and image processing techniques. The solver must deal with the complicated computation and provide high performance in order to make real-time decisions. The proposed approach enables the solver to be implemented on a single Spartan-6 XC6SLX45 FPGA produced by XILINX without using any external devices. The compact implementation is achieved through image processing techniques to optimize a tree-search algorithm of the Connect6 game. The tree search is widely used in computer games and the optimal search brings the best move in every turn of a computer game. Thus, many tree-search algorithms such as Minimax algorithm and artificial intelligence approaches have been widely proposed in this field. However, there is one fundamental problem in this area; the computation time increases rapidly in response to the growth of the game tree. It means the larger the game tree is, the bigger the circuit size is because of their highly parallel computation characteristics. Here, this paper aims to reduce the size of a Connect6 game tree using image processing techniques and its position symmetric property. The proposed solver is composed of four computational modules: a two-dimensional checkmate strategy checker, a template matching module, a skilful-line predictor, and a next-move selector. These modules work well together in selecting next moves from some candidates and the total amount of their circuits is small. The details of the hardware design for an FPGA implementation are described and the performance of this design is also shown in this paper.

Keywords: Pattern Matching, Connect6, game-tree reduction, hardware direct computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
10 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang

Abstract:

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Keywords: Cluster Computing, PC cluster, automated deployment, PC classroom

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
9 Parallel Computation in Hypersonic Aerodynamic Heating Problem

Authors: Ding Guo-hao, Li Hua, Wang Wen-long

Abstract:

A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.

Keywords: Aerodynamic Heating, MPI, AUSMPW+, ParallelComputation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
8 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: Cluster, Cost, Demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
7 Concurrent Approach to Data Parallel Model using Java

Authors: Bala Dhandayuthapani Veerasamy

Abstract:

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

Keywords: Parallel, Concurrent, Data Parallel, JDK, Thread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
6 Application of Multi-objective Optimization Packages in Design of an Evaporator Coil

Authors: A.Mosavi

Abstract:

A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design.

Keywords: Heat Transfer, Multi-objective shape optimization, multi-physics structures, modeFRONTIER

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
5 Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application

Authors: Irakli V. Gugushvili, Nickolay M. Evstigneev

Abstract:

Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is  conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800  GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.

Keywords: Parallel Computation, advection equations, CUDA technology, Flow overthe 3D Cylinder, Incompressible Pressure Projection Solver

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
4 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

Authors: Zanariah Abdul Majid, Mohamed Suleiman

Abstract:

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Keywords: Numerical Methods, block method, parallel method, higher order ODEs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
3 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: image denoising, Edge strength, Fast lifting wavelet, Local variance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2 LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation

Authors: Arjun Jain, Himanshu Agrawal, Nalini Vasudevan

Abstract:

In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.

Keywords: rendering, Ray Tracing, parallel computations, PC cluster, persistence of vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
1 Parallel Computation of Data Summation for Multiple Problem Spaces on Partitioned Optical Passive Stars Network

Authors: Khin Thida Latt, Mineo Kaneko, Yoichi Shinoda

Abstract:

In Partitioned Optical Passive Stars POPS network,nodes and couplers become free after slot to slot in some computation.It is necessary to efficiently utilize free couplers and nodes to be cost effective. Improving parallelism, we present the fast data summation algorithm for multiple problem spaces on P OP S(g, g) with smaller number of nodes for the case of d =n = g. For the case of d >n > g, we simulate the calculation of large number of data items dedicated to larger system with many nodes on smaller system with smaller number of nodes. The algorithm is faster than the best know algorithm and using smaller number of nodes and groups make the system low cost and practical.

Keywords: Optical Computing, Partitioned optical passive stars network, parallelcomputing, data sum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891