Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Multiple process plan

3 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: Case study, Decision Tree, flexible job shop scheduling, priority rules

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
2 Scheduling for a Reconfigurable Manufacturing System with Multiple Process Plans and Limited Pallets/Fixtures

Authors: Jae-Min Yu, Hyoung-Ho Doh, Ji-Su Kim, Dong-Ho Lee, Sung-Ho Nam

Abstract:

A reconfigurable manufacturing system (RMS) is an advanced system designed at the outset for rapid changes in its hardware and software components in order to quickly adjust its production capacity and functionally. Among various operational decisions, this study considers the scheduling problem that determines the input sequence and schedule at the same time for a given set of parts. In particular, we consider the practical constraints that the numbers of pallets/fixtures are limited and hence a part can be released into the system only when the fixture required for the part is available. To solve the integrated input sequencing and scheduling problems, we suggest a priority rule based approach in which the two sub-problems are solved using a combination of priority rules. To show the effectiveness of various rule combinations, a simulation experiment was done on the data for a real RMS, and the test results are reported.

Keywords: Scheduling, priority rules, Reconfigurable manufacturing system, multiple process plans, pallets/fixtures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1 Integrating Process Planning and Scheduling for Prismatic Parts Regard to Due Date

Authors: M. Haddadzade, M. R. Razfar, M. Farahnakian

Abstract:

Integration of process planning and scheduling functions is necessary to achieve superior overall system performance. This paper proposes a methodology for integration of process planning and scheduling for prismatic component that can be implemented in a company with existing departments. The developed model considers technological constraints whereas available time for machining in shop floor is the limiting factor to produce multiple process plan (MPP). It takes advantage of MPP while guarantied the fulfillment of the due dates via using overtime. This study has been proposed to determinate machining parameters, tools, machine and amount of over time within the minimum cost objective while overtime is considered for this. At last the illustration shows that the system performance is improved by as measured by cost and compatible with due date.

Keywords: Scheduling, Integration, Due date, Multiple process plan, Process planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265