Search results for: Locked Flow Field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4387

Search results for: Locked Flow Field

4387 Verification of a Locked CFD Approach to Cool Down Modeling

Authors: P. Bárta

Abstract:

Increasing demand on the performance of Subsea Production Systems (SPS) suggests a need for more detailed investigation of fluid behavior taking place in subsea equipment. Complete CFD cool down analyses of subsea equipment are very time demanding. The objective of this paper is to investigate a Locked CFD approach, which enables significant reduction of the computational time and at the same time maintains sufficient accuracy during thermal cool down simulations. The result comparison of a dead leg simulation using the Full CFD and the three LCFD-methods confirms the validity of the locked flow field assumption for the selected case. For the tested case the LCFD simulation speed up by factor of 200 results in the absolute thermal error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the LCFD results within 0.1 °C (0.5 % relative error) comparing to the Full CFD.

Keywords: CFD, Locked Flow Field, Speed up of CFD simulation time, Subsea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
4386 A Parametric Study on Deoiling Hydrocyclones Flow Field

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

Hydrocyclones flow field study is conducted by performing a parametric study. Effect of cone angle on deoiling hydrocyclones flow behaviour is studied in this research. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Because of anisotropic behaviour of flow inside hydrocyclones LES is a suitable method to predict the flow field since it resolves large scales and model isotropic small scales. Large eddy simulation is used to predict the flow behavior of three different cone angles. Differences in tangential velocity and pressure distribution are reported in some figures.

Keywords: Deoiling hydrocyclones, Flow field, Hydrocyclone cone angle, Large Eddy Simulation, Pressure distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
4385 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
4384 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: Fractional flow, oil displacement, relative permeability, simultaneously flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
4383 Discrete-time Phase and Delay Locked Loops Analyses in Tracking Mode

Authors: Jiri Sebesta

Abstract:

Phase locked loops (PLL) and delay locked loops (DLL) play an important role in establishing coherent references (phase of carrier and symbol timing) in digital communication systems. Fully digital receiver including digital carrier synchronizer and symbol timing synchronizer fulfils the conditions for universal multi-mode communication receiver with option of symbol rate setting over several digit places and long-term stability of requirement parameters. Afterwards it is necessary to realize PLL and DLL in synchronizer in digital form and to approach to these subsystems as a discrete representation of analog template. Analysis of discrete phase locked loop (DPLL) or discrete delay locked loop (DDLL) and technique to determine their characteristics based on analog (continuous-time) template is performed in this posed paper. There are derived transmission response and error function for 1st order discrete locked loop and resulting equations and graphical representations for 2nd order one. It is shown that the spectrum translation due to sampling takes effect at frequency characteristics computing for specific values of loop parameters.

Keywords: Carrier synchronization, coherent demodulation, software defined receiver, symbol timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
4382 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems

Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari

Abstract:

The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.

Keywords: Phase locked loop, PLL, notch filter, fuzzy logic control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
4381 Hardware Description Language Design of Σ-Δ Fractional-N Phase-Locked Loop for Wireless Applications

Authors: Ahmed El Oualkadi, Abdellah Ait Ouahman

Abstract:

This paper discusses a systematic design of a Σ-Δ fractional-N Phase-Locked Loop based on HDL behavioral modeling. The proposed design consists in describing the mixed behavior of this PLL architecture starting from the specifications of each building block. The HDL models of critical PLL blocks have been described in VHDL-AMS to predict the different specifications of the PLL. The effect of different noise sources has been efficiently introduced to study the PLL system performances. The obtained results are compared with transistor-level simulations to validate the effectiveness of the proposed models for wireless applications in the frequency range around 2.45 GHz.

Keywords: Phase-locked loop, frequency synthesizer, fractional-N PLL, Σ-Δ modulator, HDL models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3733
4380 Magnetohydrodynamic Mixed Convective Flow in a Cavity

Authors: R.YadollahiFarsani, B. Ghasemi

Abstract:

A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.

Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
4379 Description of Unsteady Flows in the Cuboid Container

Authors: K. Horáková, K. Fraňa, V. Honzejk

Abstract:

This part of study deals with description of unsteady isothermal melt flow in the container with cuboid shape. This melt flow is driven by rotating magnetic field. Input data (instantaneous velocities, grid coordinates and Lorentz forces) were obtained from in-house CFD code (called NS-FEM3D) which uses DDES method of computing. Description of the flow was performed by contours of Lorentz forces and caused velocity field. Taylor magnetic numbers of the flow were used 1.10^6, 5.10^6 and 1.10^7, flow was in 3D turbulent flow regime.

Keywords: In-house computing code, Lorentz forces, magnetohydrodynamics, rotating magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
4378 Flow Field Analysis of Submerged Horizontal Plate Type Breakwater

Authors: Ke Wang, Zhi-Qiang Zhang, Z. Chen

Abstract:

A submerged horizontal plate type breakwater is pointed out as an efficient wave protection device for cage culture in marine fishery. In order to reveal the wave elimination principle of this type breakwater, boundary element method is utilized to investigate this problem. The flow field and the trajectory of water particles are studied carefully. The flow field analysis shows that: the interaction of incident wave and adverse current above the plate disturbs the water domain drastically. This can slow down the horizontal velocity and vertical velocity of the water particles.

Keywords: boundary element method, plate type breakwater, flow field analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
4377 Numerical Simulation of the Flow Field around a 30° Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

This paper presents a CFD analysis of the flow around a 30° inclined flat plate of infinite span. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a flat plate invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested and flow field characteristics in the neighborhood of the flat plate have been numerically investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a twodimensional inclined plate.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
4376 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: Active flow control, flow field, OpenFOAM, plasma actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
4375 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

Authors: M. Raciti Castelli, A. Castelli, E. Benini

Abstract:

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
4374 Numerical Simulation of the Flow Field around a Vertical Flat Plate of Infinite Extent

Authors: Marco Raciti Castelli, Paolo Cioppa, Ernesto Benini

Abstract:

This paper presents a CFD analysis of the flow field around a thin flat plate of infinite span inclined at 90° to a fluid stream of infinite extent. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a bluff body invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested. Flow field characteristics in the neighborhood of the flat plate have been investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a two-dimensional vertical flat plate.

Keywords: CFD, vertical flat plate, aerodynamic force

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
4373 The Boundary Theory between Laminar and Turbulent Flows

Authors: Tomasz M. Jankowski

Abstract:

The basis of this paper is the assumption, that graviton is a measurable entity of molecular gravitational acceleration and this is not a hypothetical entity. The adoption of this assumption as an axiom is tantamount to fully opening the previously locked door to the boundary theory between laminar and turbulent flows. It leads to the theorem, that the division of flows of Newtonian (viscous) fluids into laminar and turbulent is true only, if the fluid is influenced by a powerful, external force field. The mathematical interpretation of this theorem, presented in this paper shows, that the boundary between laminar and turbulent flow can be determined theoretically. This is a novelty, because thus far the said boundary was determined empirically only and the reasons for its existence were unknown.

Keywords: Freed gravitons, free gravitons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
4372 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
4371 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini

Abstract:

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
4370 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank

Authors: Akhilesh Khapre, Basudeb Munshi

Abstract:

A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.

Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4069
4369 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

Authors: Mukesh Kumar Awasth, Mohammad Tamsir

Abstract:

The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
4368 Reconstruction of the Most Energetic Modes in a Fully Developed Turbulent Channel Flow with Density Variation

Authors: Elteyeb Eljack, Takashi Ohta

Abstract:

Proper orthogonal decomposition (POD) is used to reconstruct spatio-temporal data of a fully developed turbulent channel flow with density variation at Reynolds number of 150, based on the friction velocity and the channel half-width, and Prandtl number of 0.71. To apply POD to the fully developed turbulent channel flow with density variation, the flow field (velocities, density, and temperature) is scaled by the corresponding root mean square values (rms) so that the flow field becomes dimensionless. A five-vector POD problem is solved numerically. The reconstructed second-order moments of velocity, temperature, and density from POD eigenfunctions compare favorably to the original Direct Numerical Simulation (DNS) data.

Keywords: Pattern Recognition, POD, Coherent Structures, Low dimensional modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
4367 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
4366 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
4365 Design of High Gain, High Bandwidth Op-Amp for Reduction of Mismatch Currents in Charge Pump PLL in 180 nm CMOS Technology

Authors: R .H. Talwekar, S. S Limaye

Abstract:

The designing of charge pump with high gain Op- Amp is a challenging task for getting faithful response .Design of high performance phase locked loop require ,a design of high performance charge pump .We have designed a operational amplifier for reducing the error caused by high speed glitch in a transistor and mismatch currents . A separate Op-Amp has designed in 180 nm CMOS technology by CADENCE VIRTUOSO tool. This paper describes the design of high performance charge pump for GHz CMOS PLL targeting orthogonal frequency division multiplexing (OFDM) application. A high speed low power consumption Op-Amp with more than 500 MHz bandwidth has designed for increasing the speed of charge pump in Phase locked loop.

Keywords: Charge pump (CP) Orthogonal frequency divisionmultiplexing (OFDM), Phase locked loop (PLL), Phase frequencydetector (PFD), Voltage controlled oscillator (VCO),

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3369
4364 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh

Abstract:

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
4363 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
4362 Optical Heterodyning of Injection-Locked Laser Sources — A Novel Technique for Millimeter-Wave Signal Generation

Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha

Abstract:

A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.

Keywords: FM sideband injection locking, Master-Slave injection locking, Millimetre-wave signal generation and Optical heterodyning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
4361 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
4360 On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer

Authors: Carmen D. Pricinâ, E. Corina Cipu, Victor Ţigoiu

Abstract:

The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.

Keywords: Non newtonian fluid flow, orthogonal rheometer, third grade fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
4359 Electromagnetic Flow Meter Efficiency

Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva

Abstract:

A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.

Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
4358 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352