Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14

Search results for: Lexicon

14 The Association between Affective States and Sexual/Health-Related Status among Men Who Have Sex with Men in China: An Exploration Study Using Social Media Data

Authors: Zhi-Wei Zheng, Zhong-Qi Liu, Jia-Ling Qiu, Shan-Qing Guo, Zhong-Wei Jia, Chun Hao

Abstract:

Objectives: The purpose of this study was to understand and examine the association between diurnal mood variation and sexual/health-related status among men who have sex with men (MSM) using data from MSM Chinese Twitter messages. The study consists of 843,745 postings of 377,610 MSM users located in Guangdong that were culled from the MSM Chinese Twitter App. Positive affect, negative affect, sexual related behaviors, and health-related status were measured using the Simplified Chinese Linguistic Inquiry and Word Count. Emotions, including joy, sadness, anger, fear, and disgust were measured using the Weibo Basic Mood Lexicon. A positive sentiment score and a positive emotions score were also calculated. Linear regression models based on a permutation test were used to assess associations between affective states and sexual/health-related status. In the results, 5,871 active MSM users and their 477,374 postings were finally selected. MSM expressed positive affect and joy at 8 a.m. and expressed negative affect and negative emotions between 2 a.m. and 4 a.m. In addition, 25.1% of negative postings were directly related to health and 13.4% reported seeking social support during that sensitive period. MSM who were senior, educated, overweight or obese, self-identified as performing a versatile sex role, and with less followers, more followers, and less chat groups mainly expressed more negative affect and negative emotions. MSM who talked more about sexual-related behaviors had a higher positive sentiment score (β=0.29, p < 0.001) and a higher positive emotions score (β = 0.16, p < 0.001). MSM who reported more on their health status had a lower positive sentiment score (β = -0.83, p < 0.001) and a lower positive emotions score (β = -0.37, p < 0.001). The study concluded that psychological intervention based on an app for MSM should be conducted, as it may improve mental health.

Keywords: Social Media, Affect, men who have sex with men, health-related status, sexual-related behaviors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125
13 The Role of Ideophones: Phonological and Morphological Characteristics in Literature

Authors: Cristina Bahón Arnaiz

Abstract:

Many Asian languages, such as Korean and Japanese, are well-known for their wide use of sound symbolic words or ideophones. This is a very particular characteristic which enriches its lexicon hugely. Ideophones are a class of sound symbolic words that utilize sound symbolism to express aspects, states, emotions, or conditions that can be experienced through the senses, such as shape, color, smell, action or movement. Ideophones have very particular characteristics in terms of sound symbolism and morphology, which distinguish them from other words. The phonological characteristics of ideophones are vowel ablaut or vowel gradation and consonant mutation. In the case of Korean, there are light vowels and dark vowels. Depending on the type of vowel that is used, the meaning will slightly change. Consonant mutation, also known as consonant ablaut, contributes to the level of intensity, emphasis, and volume of an expression. In addition to these phonological characteristics, there is one main morphological singularity, which is reduplication and it carries the meaning of continuity, repetition, intensity, emphasis, and plurality. All these characteristics play an important role in both linguistics and literature as they enhance the meaning of what is trying to be expressed with incredible semantic detail, expressiveness, and rhythm. The following study will analyze the ideophones used in a single paragraph of a Korean novel, which add incredible yet subtle detail to the meaning of the words, and advance the expressiveness and rhythm of the text. The results from analyzing one paragraph from a novel, after presenting the phonological and morphological characteristics of Korean ideophones, will evidence the important role that ideophones play in literature. 

Keywords: ideophones, mimetic words, phonomimes, phenomimes, psychomimes, sound symbolism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251
12 Grammatically Coded Corpus of Spoken Lithuanian: Methodology and Development

Authors: L. Kamandulytė-Merfeldienė

Abstract:

The paper deals with the main issues of methodology of the Corpus of Spoken Lithuanian which was started to be developed in 2006. At present, the corpus consists of 300,000 grammatically annotated word forms. The creation of the corpus consists of three main stages: collecting the data, the transcription of the recorded data, and the grammatical annotation. Collecting the data was based on the principles of balance and naturality. The recorded speech was transcribed according to the CHAT requirements of CHILDES. The transcripts were double-checked and annotated grammatically using CHILDES. The development of the Corpus of Spoken Lithuanian has led to the constant increase in studies on spontaneous communication, and various papers have dealt with a distribution of parts of speech, use of different grammatical forms, variation of inflectional paradigms, distribution of fillers, syntactic functions of adjectives, the mean length of utterances.

Keywords: Lexicon, CHILDES, corpus of spoken Lithuanian, grammatical annotation, grammatical disambiguation, Lithuanian

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603
11 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: Modelling, Petri nets, lexicon of disasters, text annotation, social disasters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
10 Saudi Twitter Corpus for Sentiment Analysis

Authors: Adel Assiri, Ahmed Emam, Hmood Al-Dossari

Abstract:

Sentiment analysis (SA) has received growing attention in Arabic language research. However, few studies have yet to directly apply SA to Arabic due to lack of a publicly available dataset for this language. This paper partially bridges this gap due to its focus on one of the Arabic dialects which is the Saudi dialect. This paper presents annotated data set of 4700 for Saudi dialect sentiment analysis with (K= 0.807). Our next work is to extend this corpus and creation a large-scale lexicon for Saudi dialect from the corpus.

Keywords: Annotation, sentiment analysis, Twitter, Arabic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
9 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: Sentimental analysis, Document Analysis, Emotion Detection, Weka tool, NRC lexicon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
8 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: Classification Algorithms, Emotion Detection, Weka tool, TF-IDF

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
7 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech Recognition, acoustic phonetic, hidden markov models (HMM), human machine performance, artificial intelligence, statistical models of speech recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6196
6 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Text Mining, Opinion mining, opinion summarization, Sentiment Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
5 Issue Reorganization Using the Measure of Relevance

Authors: William Wong Xiu Shun, Yoonjin Hyun, Mingyu Kim, Seongi Choi, Namgyu Kim

Abstract:

The need to extract R&D keywords from issues and use them to retrieve R&D information is increasing rapidly. However, it is difficult to identify related issues or distinguish them. Although the similarity between issues cannot be identified, with an R&D lexicon, issues that always share the same R&D keywords can be determined. In detail, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Furthermore, the relationship among issues that share the same R&D keywords can be shown in a more systematic way by clustering them according to keywords. Thus, sharing R&D results and reusing R&D technology can be facilitated. Indirectly, redundant investment in R&D can be reduced as the relevant R&D information can be shared among corresponding issues and the reusability of related R&D can be improved. Therefore, a methodology to cluster issues from the perspective of common R&D keywords is proposed to satisfy these demands.

Keywords: Clustering, Text Mining, Social Network Analysis, topic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
4 Identification of Non-Lexicon Non-Slang Unigrams in Body-enhancement Medicinal UBE

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

Email has become a fast and cheap means of online communication. The main threat to email is Unsolicited Bulk Email (UBE), commonly called spam email. The current work aims at identification of unigrams in more than 2700 UBE that advertise body-enhancement drugs. The identification is based on the requirement that the unigram is neither present in dictionary, nor is a slang term. The motives of the paper are many fold. This is an attempt to analyze spamming behaviour and employment of wordmutation technique. On the side-lines of the paper, we have attempted to better understand the spam, the slang and their interplay. The problem has been addressed by employing Tokenization technique and Unigram BOW model. We found that the non-lexicon words constitute nearly 66% of total number of lexis of corpus whereas non-slang words constitute nearly 2.4% of non-lexicon words. Further, non-lexicon non-slang unigrams composed of 2 lexicon words, form more than 71% of the total number of such unigrams. To the best of our knowledge, this is the first attempt to analyze usage of non-lexicon non-slang unigrams in any kind of UBE.

Keywords: Medicinal, Lexicon, Slang, Unsolicited Bulk e-mail (UBE), Body Enhancement, Unigram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
3 Does the Polysemic Nature of Energy Security Make it a 'Wicked' Problem?

Authors: Lynne Chester

Abstract:

Governments around the world are expending considerable time and resources framing strategies and policies to deliver energy security. The term 'energy security' has quietly slipped into the energy lexicon without any meaningful discourse about its meaning or assumptions. An examination of explicit and inferred definitions finds that the concept is inherently slippery because it is polysemic in nature having multiple dimensions and taking on different specificities depending on the country (or continent), timeframe or energy source to which it is applied. But what does this mean for policymakers? Can traditional policy approaches be used to address the problem of energy security or does its- polysemic qualities mean that it should be treated as a 'wicked' problem? To answer this question, the paper assesses energy security against nine commonly cited characteristics of wicked policy problems and finds strong evidence of 'wickedness'.

Keywords: Energy Security, Policy making, wicked problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
2 SMaTTS: Standard Malay Text to Speech System

Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan

Abstract:

This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.

Keywords: natural language processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1 Urdu Nastaleeq Optical Character Recognition

Authors: Zaheer Ahmad, Jehanzeb Khan Orakzai, Inam Shamsher, Awais Adnan

Abstract:

This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.

Keywords: OCR, Urdu, Cursive Script

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448