Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Search results for: GMD

10 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link

Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito

Abstract:

Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.

Keywords: Arms control, arms race, global security, GMD, ICBM, missile defense, proliferation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
9 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, World View-2, land parcels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245
8 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
7 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
6 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
5 Using Data Mining Methodology to Build the Predictive Model of Gold Passbook Price

Authors: Chien-Hui Yang, Che-Yang Lin, Ya-Chen Hsu

Abstract:

Gold passbook is an investing tool that is especially suitable for investors to do small investment in the solid gold. The gold passbook has the lower risk than other ways investing in gold, but its price is still affected by gold price. However, there are many factors can cause influences on gold price. Therefore, building a model to predict the price of gold passbook can both reduce the risk of investment and increase the benefits. This study investigates the important factors that influence the gold passbook price, and utilize the Group Method of Data Handling (GMDH) to build the predictive model. This method can not only obtain the significant variables but also perform well in prediction. Finally, the significant variables of gold passbook price, which can be predicted by GMDH, are US dollar exchange rate, international petroleum price, unemployment rate, whole sale price index, rediscount rate, foreign exchange reserves, misery index, prosperity coincident index and industrial index.

Keywords: Gold price, Gold passbook price, Group Method ofData Handling (GMDH), Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
4 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain

Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine

Abstract:

In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
3 The Mechanistic Deconvolutive Image Sensor Model for an Arbitrary Pan–Tilt Plane of View

Authors: S. H. Lim, T. Furukawa

Abstract:

This paper presents a generalized form of the mechanistic deconvolution technique (GMD) to modeling image sensors applicable in various pan–tilt planes of view. The mechanistic deconvolution technique (UMD) is modified with the given angles of a pan–tilt plane of view to formulate constraint parameters and characterize distortion effects, and thereby, determine the corrected image data. This, as a result, does not require experimental setup or calibration. Due to the mechanistic nature of the sensor model, the necessity for the sensor image plane to be orthogonal to its z-axis is eliminated, and it reduces the dependency on image data. An experiment was constructed to evaluate the accuracy of a model created by GMD and its insensitivity to changes in sensor properties and in pan and tilt angles. This was compared with a pre-calibrated model and a model created by UMD using two sensors with different specifications. It achieved similar accuracy with one-seventh the number of iterations and attained lower mean error by a factor of 2.4 when compared to the pre-calibrated and UMD model respectively. The model has also shown itself to be robust and, in comparison to pre-calibrated and UMD model, improved the accuracy significantly.

Keywords: Image sensor modeling, mechanistic deconvolution, calibration, lens distortion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
2 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
1 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss

Abstract:

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.

Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491