Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Free fatty acids

5 Effect of Ripening Conditions and Storage Time on Oxidative and Sensory Stability of Petrovská Klobása Sausage

Authors: Branislav V. Šojić, Ljiljana S. Petrović, Vladimir M. Tomović, Natalija R. Džinić, Anamarija I. Mandić, Snežana B. Škaljac, Marija R. Jokanović, Predrag M. Ikonić, Tatjana A. Tasić, Ivana J. Sedej

Abstract:

The influence of ripening conditions (traditional and industrial) on oxidative and sensory stability of dry fermented sausage (Petrovská klobása), during 7 months of storage, was investigated. During the storage period the content of free fatty acids was significantly higher (P<0.05), while the content of malondialdehyde was significantly lower in the sausage subjected to traditional conditions of drying. At the end of the storage period, content of hexanal in the sausage subjected to traditional conditions of ripening (1.67μg/g) was significantly lower (P<0.05) in comparison with this content in the sausage subjected to industrial conditions of ripening (4.94µg/g). Traditional conditions of ripening at lower temperatures have led to better sensory properties of odor and taste of traditional dry fermented sausage, Petrovská klobása after 2 and 7 months of storage.

Keywords: lipid oxidation, Petrovská klobása, storage time, sensory stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627
4 Esterification of Free Fatty Acids in Crude Palm Oil Using Alumina-Doped Sulfated Tin Oxide as a Catalyst

Authors: Worawoot Prasitturattanachai, Kamchai Nuithitikul

Abstract:

The conventional production of biodiesel from crude palm oil which contains large amounts of free fatty acids in the presence of a homogeneous base catalyst confronts the problems of soap formation and very low yield of biodiesel. To overcome these problems, free fatty acids must be esterified to their esters in the presence of an acid catalyst prior to alkaline-catalyzed transesterification. Sulfated metal oxides are a promising group of catalysts due to their very high acidity. In this research, aluminadoped sulfated tin oxide (SO4 2-/Al2O3-SnO2) catalysts were prepared and used for esterification of free fatty acids in crude palm oil in a batch reactor. The SO4 2-/Al2O3-SnO2 catalysts were prepared from different Al precursors. The results showed that different Al precursors gave different activities of the SO4 2-/Al2O3-SnO2 catalysts. The esterification of free fatty acids in crude palm oil with methanol in the presence of SO4 2-/Al2O3-SnO2 catalysts followed first-order kinetics.

Keywords: Biodiesel, esterification, fatty acid, methyl ester, Sulfated tin oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2662
3 Polyethylenimine Coated Carbon Nanotube for Detecting Rancidity in Frying Oil

Authors: Vincent Lau Chun Fai, Yang Doo Lee, Kyongsoo Lee, Keun-Soo Lee, Shin-Kyung, Byeong-Kwon Ju

Abstract:

Chemical detection is still a continuous challenge when it comes to designing single-walled carbon nanotube (SWCNT) sensors with high selectivity, especially in complex chemical environments. A perfect example of such an environment would be in thermally oxidized soybean oil. At elevated temperatures, oil oxidizes through a series of chemical reactions which results in the formation of monoacylglycerols, diacylglycerols, oxidized triacylglycerols, dimers, trimers, polymers, free fatty acids, ketones, aldehydes, alcohols, esters, and other minor products. In order to detect the rancidity of oxidized soybean oil, carbon nanotube chemiresistor sensors have been coated with polyethylenimine (PEI) to enhance the sensitivity and selectivity. PEI functionalized SWCNTs are known to have a high selectivity towards strong electron withdrawing molecules. The sensors were very responsive to different oil oxidation levels and furthermore, displayed a rapid recovery in ambient air without the need of heating or UV exposure.

Keywords: Sensor, Carbon Nanotubes, polyethylenimine, oxidized oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
2 Esterification of Free Fatty Acids in Crude Palm Oil with Sulfated Zirconia: Effect of Calcination Temperature

Authors: Suthat Turapan, Cattareya Yotkamchornkun, Kamchai Nuithitikul

Abstract:

The production of biodiesel from crude palm oil with a homogeneous base catalyst is unlikely owing to considerable formation of soap. Free fatty acids (FFA) in crude palm oil need to be reduced, e.g. by esterification. This study investigated the activity of sulfated zirconia calcined at various temperatures for esterification of FFA in crude palm oil to biodiesel. It was found that under a proper reaction condition, sulfated zirconia well catalyzes esterification. FFA content can be reduced to an acceptable value for typical biodiesel production with a homogeneous base catalyst. Crystallinity and sulfate attachment of sulfated zirconia depend on calcination temperature during the catalyst preparation. Too low temperature of calcination gives amorphous sulfated zirconia which has low activity for esterification of FFA. In contrast, very high temperature of calcination removes sulfate group, consequently, conversion of FFA is reduced. The appropriate temperature range of calcination is 550-650 oC.

Keywords: Biodiesel, esterification, Free fatty acids, Sulfatedzirconia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
1 Biodiesel as an Alternative Fuel for Diesel Engines

Authors: F. Halek, A. Kavousi, M. Banifatemi

Abstract:

There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) was investigated in this work. Conditions for esterification process of rapeseed oil were 1.8 % H2SO4 as catalyst, MeOH/oil of molar ratio 2 : 0.1 and reaction temperature 65 °C, for a period of 3h. The yield of methyl ester was > 90 % in 1 h. The amount of FFA was reduced from 93 wt % to less than 2 wt % at the end of the esterification process. The FAME was pureed by neutralization with 1 M sodium hydroxide in water solution at a reaction temperature of 62 °C. The final FAME product met with the biodiesel quality standard, and ASTM D 6751.

Keywords: Biodiesel, alternative fuels, transesterification, fatty acid, MethylEster, Seed Oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712