Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16

Search results for: Elliptic Curves

16 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: Discrete logarithm problem, general attacks, elliptic curves, strong curves, prime field, binary field, attack experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
15 Improved of Elliptic Curves Cryptography over a Ring

Authors: A. Chillali, A. Tadmori, M. Ziane

Abstract:

In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.

Keywords: Elliptic Curves, Finite Ring, Cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
14 Cryptography Over Elliptic Curve Of The Ring Fq[e], e4 = 0

Authors: Chillali Abdelhakim

Abstract:

Groups where the discrete logarithm problem (DLP) is believed to be intractable have proved to be inestimable building blocks for cryptographic applications. They are at the heart of numerous protocols such as key agreements, public-key cryptosystems, digital signatures, identification schemes, publicly verifiable secret sharings, hash functions and bit commitments. The search for new groups with intractable DLP is therefore of great importance.The goal of this article is to study elliptic curves over the ring Fq[], with Fq a finite field of order q and with the relation n = 0, n ≥ 3. The motivation for this work came from the observation that several practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic Curve Cryptosystems . In a first time, we describe these curves defined over a ring. Then, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. In anther article we study their cryptographic properties, an attack of the elliptic discrete logarithm problem, a new cryptosystem over these curves.

Keywords: Elliptic Curve Over Ring, Discrete Logarithm Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3146
13 Elliptic Divisibility Sequences over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In this work, we study elliptic divisibility sequences over finite fields. Morgan Ward in [14], [15] gave arithmetic theory of elliptic divisibility sequences and formulas for elliptic divisibility sequences with rank two over finite field Fp. We study elliptic divisibility sequences with rank three, four and five over a finite field Fp, where p > 3 is a prime and give general terms of these sequences and then we determine elliptic and singular curves associated with these sequences.

Keywords: Elliptic divisibility sequences, singular elliptic divisibilitysequences, elliptic curves, singular curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
12 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences

Authors: Ahmet Tekcan

Abstract:

Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.

Keywords: Binary quadratic form, elliptic curves, cubic congruence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
11 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
10 Secure Protocol for Short Message Service

Authors: Shubat S. Ahmeda, Ashraf M. Ali Edwila

Abstract:

Short Message Service (SMS) has grown in popularity over the years and it has become a common way of communication, it is a service provided through General System for Mobile Communications (GSM) that allows users to send text messages to others. SMS is usually used to transport unclassified information, but with the rise of mobile commerce it has become a popular tool for transmitting sensitive information between the business and its clients. By default SMS does not guarantee confidentiality and integrity to the message content. In the mobile communication systems, security (encryption) offered by the network operator only applies on the wireless link. Data delivered through the mobile core network may not be protected. Existing end-to-end security mechanisms are provided at application level and typically based on public key cryptosystem. The main concern in a public-key setting is the authenticity of the public key; this issue can be resolved by identity-based (IDbased) cryptography where the public key of a user can be derived from public information that uniquely identifies the user. This paper presents an encryption mechanism based on the IDbased scheme using Elliptic curves to provide end-to-end security for SMS. This mechanism has been implemented over the standard SMS network architecture and the encryption overhead has been estimated and compared with RSA scheme. This study indicates that the ID-based mechanism has advantages over the RSA mechanism in key distribution and scalability of increasing security level for mobile service.

Keywords: Elliptic Curve Cryptography (ECC), End-to-end Security, Identity-based Cryptography, Public Key, RSA, SMS Protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
9 The Number of Rational Points on Elliptic Curves and Circles over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In elliptic curve theory, number of rational points on elliptic curves and determination of these points is a fairly important problem. Let p be a prime and Fp be a finite field and k ∈ Fp. It is well known that which points the curve y2 = x3 + kx has and the number of rational points of on Fp. Consider the circle family x2 + y2 = r2. It can be interesting to determine common points of these two curve families and to find the number of these common points. In this work we study this problem.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves and circles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
8 A Pairing-based Blind Signature Scheme with Message Recovery

Authors: Song Han, Elizabeth Chang

Abstract:

Blind signatures enable users to obtain valid signatures for a message without revealing its content to the signer. This paper presents a new blind signature scheme, i.e. identity-based blind signature scheme with message recovery. Due to the message recovery property, the new scheme requires less bandwidth than the identitybased blind signatures with similar constructions. The scheme is based on modified Weil/Tate pairings over elliptic curves, and thus requires smaller key sizes for the same level of security compared to previous approaches not utilizing bilinear pairings. Security and efficiency analysis for the scheme is provided in this paper.

Keywords: Blind Signature, Message Recovery, Pairings, Elliptic Curves, Blindness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
7 Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems

Authors: Pu Duan, Shi Cui, Choong Wah Chan

Abstract:

Finding suitable non-supersingular elliptic curves for pairing-based cryptosystems becomes an important issue for the modern public-key cryptography after the proposition of id-based encryption scheme and short signature scheme. In previous work different algorithms have been proposed for finding such elliptic curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. In this paper a new method is presented to find more non-supersingular elliptic curves for pairing-based cryptosystems with general embedding degree k and large values of cofactor h. In addition, some effective parameters of these non-supersingular elliptic curves are provided in this paper.

Keywords: Family of group order, kth root of unity, non-supersingular elliptic curves polynomial field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
6 Deniable Authentication Protocol Resisting Man-in-the-Middle Attack

Authors: Song Han, Wanquan Liu, Elizabeth Chang

Abstract:

Deniable authentication is a new protocol which not only enables a receiver to identify the source of a received message but also prevents a third party from identifying the source of the message. The proposed protocol in this paper makes use of bilinear pairings over elliptic curves, as well as the Diffie-Hellman key exchange protocol. Besides the security properties shared with previous authentication protocols, the proposed protocol provides the same level of security with smaller public key sizes.

Keywords: Deniable Authentication, Man-in-the-middleAttack, Cryptography, Elliptic Curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
5 The Elliptic Curves y2 = x3 - t2x over Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
4 The Number of Rational Points on Elliptic Curves y2 = x3 + b2 Over Finite Fields

Authors: Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract:

Let p be a prime number, Fpbe a finite field and let Qpdenote the set of quadratic residues in Fp. In the first section we givesome notations and preliminaries from elliptic curves. In the secondsection, we consider some properties of rational points on ellipticcurves Ep,b: y2= x3+ b2 over Fp, where b ∈ F*p. Recall that theorder of Ep,bover Fpis p + 1 if p ≡ 5(mod 6). We generalize thisresult to any field Fnp for an integer n≥ 2. Further we obtain someresults concerning the sum Σ[x]Ep,b(Fp) and Σ[y]Ep,b(Fp), thesum of x- and y- coordinates of all points (x, y) on Ep,b, and alsothe the sum Σ(x,0)Ep,b(Fp), the sum of points (x, 0) on Ep,b.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
3 Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime

Authors: Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.

Keywords: Elliptic curves over finite fields, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime

Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract:

In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.

Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1 The Number of Rational Points on Elliptic Curves y2 = x3 + a3 on Finite Fields

Authors: Musa Demirci, Nazlı Yıldız İkikardeş, Gökhan Soydan, İsmail Naci Cangül

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp. We give results concerning the number of points Np,a on the elliptic curve y2 ≡ x3 +a3(mod p) according to whether a and x are quadratic residues or non-residues. We use two lemmas to prove the main results first of which gives the list of primes for which -1 is a quadratic residue, and the second is a result from [1]. We get the results in the case where p is a prime congruent to 5 modulo 6, while when p is a prime congruent to 1 modulo 6, there seems to be no regularity for Np,a.

Keywords: Elliptic curves over finite fields, rational points, quadratic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894