Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Document clustering

4 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge

Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang

Abstract:

Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.

Keywords: Text classification, Text clustering, Text similarity, Wikipedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
3 Ontology-based Concept Weighting for Text Documents

Authors: Hmway Hmway Tar, Thi Thi Soe Nyaunt

Abstract:

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Keywords: Clustering, Concept Weight, Document clustering, Feature Selection, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
2 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1 Advanced Information Extraction with n-gram based LSI

Authors: Ahmet Güven, Ö. Özgür Bozkurt, Oya Kalıpsız

Abstract:

Number of documents being created increases at an increasing pace while most of them being in already known topics and little of them introducing new concepts. This fact has started a new era in information retrieval discipline where the requirements have their own specialties. That is digging into topics and concepts and finding out subtopics or relations between topics. Up to now IR researches were interested in retrieving documents about a general topic or clustering documents under generic subjects. However these conventional approaches can-t go deep into content of documents which makes it difficult for people to reach to right documents they were searching. So we need new ways of mining document sets where the critic point is to know much about the contents of the documents. As a solution we are proposing to enhance LSI, one of the proven IR techniques by supporting its vector space with n-gram forms of words. Positive results we have obtained are shown in two different application area of IR domain; querying a document database, clustering documents in the document database.

Keywords: Document clustering, Information Extraction, Information Retrieval, LSI, n-gram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422