Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Search results for: electromechanical admittance

12 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the  reinforcement bars of reinforced concrete members using PZTs is  presented. The damage can be the result of excessive elongation of  the steel bar due to steel yielding or due to local steel corrosion. In  both cases the damage is simulated by considering reduced diameter  of the rebar along the damaged part of its length. An integration  approach based on both electromechanical admittance methodology  and guided wave propagation technique is used to evaluate the  artificial damage on the examined longitudinal steel bar. Two  actuator PZTs and a sensor PZT are considered to be bonded on the  examined steel bar. The admittance of the Sensor PZT is calculated  using COMSOL 3.4a. Fast Furrier Transformation for a better  evaluation of the results is employed. An effort for the quantification  of the damage detection using the root mean square deviation  (RMSD) between the healthy condition and damage state of the  sensor PZT is attempted. The numerical value of the RSMD yields a  level for the difference between the healthy and the damaged  admittance computation indicating this way the presence of damage  in the structure. Experimental measurements are also presented.

 

Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
11 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements

Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach

Abstract:

In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.

Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
10 Development of a Mathematical Theoretical Model and Simulation of the Electromechanical System for Wave Energy Harvesting

Authors: P. Valdez, M. Pelissero, A. Haim, F. MuiƱo, F. Galia, R. Tula

Abstract:

As a result of the studies performed on the wave energy resource worldwide, a research project was set up to harvest wave energy for its conversion into electrical energy. Within this framework, a theoretical model of the electromechanical energy harvesting system, developed with MATLAB’s Simulink software, will be provided. This tool recreates the site conditions where the device will be installed and offers valuable information about the amount of energy that can be harnessed. This research provides a deeper understanding of the utilization of wave energy in order to improve the efficiency of a 1:1 scale prototype of the device.

Keywords: Electromechanical device, modeling, renewable energy, sea wave energy, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
9 Counterpropagation Neural Network for Solving Power Flow Problem

Authors: Jayendra Krishna, Laxmi Srivastava

Abstract:

Power flow (PF) study, which is performed to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state operating condition of a system, is very important and is the most frequently carried out study by power utilities for power system planning, operation and control. In this paper, a counterpropagation neural network (CPNN) is proposed to solve power flow problem under different loading/contingency conditions for computing bus voltage magnitudes and angles of the power system. The counterpropagation network uses a different mapping strategy namely counterpropagation and provides a practical approach for implementing a pattern mapping task, since learning is fast in this network. The composition of the input variables for the proposed neural network has been selected to emulate the solution process of a conventional power flow program. The effectiveness of the proposed CPNN based approach for solving power flow is demonstrated by computation of bus voltage magnitudes and voltage angles for different loading conditions and single line-outage contingencies in IEEE 14-bus system.

Keywords: Admittance matrix, counterpropagation neural network, line outage contingency, power flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
8 Development of an Efficient CVT using Electromecanical System

Authors: A. A. Shafie, M. H. Ali

Abstract:

Continuously variable transmission (CVT) is a type of automatic transmission that can change the gear ratio to any arbitrary setting within the limits. The most common type of CVT operates on a pulley system that allows an infinite variability between highest and lowest gears with no discrete steps. However, the current CVT system with hydraulic actuation method suffers from the power loss. It needs continuous force for the pulley to clamp the belt and hold the torque resulting in large amount of energy consumption. This study focused on the development of an electromechanical actuated control CVT to eliminate the problem that faced by the existing CVT. It is conducted with several steps; computing and selecting the appropriate sizing for stroke length, lead screw system and etc. From the visual observation it was found that the CVT system of this research is satisfactory.

Keywords: CVT, Hydraulic Actuator, Discrete shifts, Electromechanical system, Lead screws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
7 Left Ventricular Model Using Second Order Electromechanical Coupling: Effects of Viscoelastic Damping

Authors: Elie H. Karam, Antoine B. Abche

Abstract:

It is known that the heart interacts with and adapts to its venous and arterial loading conditions. Various experimental studies and modeling approaches have been developed to investigate the underlying mechanisms. This paper presents a model of the left ventricle derived based on nonlinear stress-length myocardial characteristics integrated over truncated ellipsoidal geometry, and second-order dynamic mechanism for the excitation-contraction coupling system. The results of the model presented here describe the effects of the viscoelastic damping element of the electromechanical coupling system on the hemodynamic response. Different heart rates are considered to study the pacing effects on the performance of the left-ventricle against constant preload and afterload conditions under various damping conditions. The results indicate that the pacing process of the left ventricle has to take into account, among other things, the viscoelastic damping conditions of the myofilament excitation-contraction process.

Keywords: Myocardial sarcomere, cardiac pump, excitationcontraction coupling, viscoelasicity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
6 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes

Authors: Baghdasaryan Marinka

Abstract:

The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.

Keywords: Electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
5 Robust Position Control of an Electromechanical Actuator for Automotive Applications

Authors: Markus Reichhartinger, Martin Horn

Abstract:

In this paper, the position control of an electronic throttle actuator is outlined. The dynamic behavior of the actuator is described with the help of an uncertain plant model. This motivates the controller design based on the ideas of higher-order slidingmodes. As a consequence anti-chattering techniques can be omitted. It is shown that the same concept is applicable to estimate unmeasureable signals. The control law and the observer are implemented on an electronic control unit. Results achieved by numerical simulations and real world experiments are presented and discussed.

Keywords: higher order sliding-mode, throttle actuator, electromechanicalsystem, robust and nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
4 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: Balanced realization, controllability Grammian, electromechanical oscillations, FACTS, Hankel singular values, observability Grammian, POD, PSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
3 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-Fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fullycrystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: Crystal orientation, electrostrictive strain, mechanical energy density, permittivity, relaxor ferroelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
2 Dynamics Characterizations of Dielectric Electro-Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: Dielectric Electro-active Polymer, Pull Actuator, Static, Dynamic, Electromechanical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF
1 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF