Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: discrepancy principle

3 Multilevel Arnoldi-Tikhonov Regularization Methods for Large-Scale Linear Ill-Posed Systems

Authors: Yiqin Lin, Liang Bao

Abstract:

This paper is devoted to the numerical solution of large-scale linear ill-posed systems. A multilevel regularization method is proposed. This method is based on a synthesis of the Arnoldi-Tikhonov regularization technique and the multilevel technique. We show that if the Arnoldi-Tikhonov method is a regularization method, then the multilevel method is also a regularization one. Numerical experiments presented in this paper illustrate the effectiveness of the proposed method.

Keywords: Discrete ill-posed problem, Tikhonov regularization, discrepancy principle, Arnoldi process, multilevel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287
2 Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method

Authors: Ou Xie, Zhenyu Zhao

Abstract:

In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable.

Keywords: Ill-posed problem, Unknown source, Poisson equation, Tikhonov regularization method, Discrepancy principle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
1 Fourier Spectral Method for Analytic Continuation

Authors: Zhenyu Zhao, Lei You

Abstract:

The numerical analytic continuation of a function f(z) = f(x + iy) on a strip is discussed in this paper. The data are only given approximately on the real axis. The periodicity of given data is assumed. A truncated Fourier spectral method has been introduced to deal with the ill-posedness of the problem. The theoretic results show that the discrepancy principle can work well for this problem. Some numerical results are also given to show the efficiency of the method.

Keywords: Analytic continuation, ill-posed problem, regularization method Fourier spectral method, the discrepancy principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105