Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40

Search results for: Optimization Techniques

40 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison

Authors: Laurent Thiry, Michel Hassenforder

Abstract:

This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.

Keywords: Optimization, Functional Programming, data transformation, information server

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259
39 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: Optimization, Computational Fluid Dynamics, axial flow turbine, gas turbine power plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
38 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: Fuzzy Logic, Wireless Sensor Network, energy model, Deterministic stable election protocol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
37 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: Optimization, Power System, Voltage Stability, cuckoo search algorithm, var compensators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
36 Advanced Technologies and Algorithms for Efficient Portfolio Selection

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.

Keywords: Optimization Techniques, Heuristics, portfolio selection, financial models, stochastics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
35 Music-Inspired Harmony Search Algorithm for Fixed Outline Non-Slicing VLSI Floorplanning

Authors: K. Sivasubramanian, K. B. Jayanthi

Abstract:

Floorplanning plays a vital role in the physical design process of Very Large Scale Integrated (VLSI) chips. It is an essential design step to estimate the chip area prior to the optimized placement of digital blocks and their interconnections. Since VLSI floorplanning is an NP-hard problem, many optimization techniques were adopted in the literature. In this work, a music-inspired Harmony Search (HS) algorithm is used for the fixed die outline constrained floorplanning, with the aim of reducing the total chip area. HS draws inspiration from the musical improvisation process of searching for a perfect state of harmony. Initially, B*-tree is used to generate the primary floorplan for the given rectangular hard modules and then HS algorithm is applied to obtain an optimal solution for the efficient floorplan. The experimental results of the HS algorithm are obtained for the MCNC benchmark circuits.

Keywords: floor planning, Harmony search, non-slicing floorplan, very large scale integrated circuits

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
34 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: Optimization, resistivity, inversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4883
33 Trust and Reputation Mechanism with Path Optimization in Multipath Routing

Authors: M. Rajaram, Ramya Dorai

Abstract:

A Mobile Adhoc Network (MANET) is a collection of mobile nodes that communicate with each other with wireless links and without pre-existing communication infrastructure. Routing is an important issue which impacts network performance. As MANETs lack central administration and prior organization, their security concerns are different from those of conventional networks. Wireless links make MANETs susceptible to attacks. This study proposes a new trust mechanism to mitigate wormhole attack in MANETs. Different optimization techniques find available optimal path from source to destination. This study extends trust and reputation to an improved link quality and channel utilization based Adhoc Ondemand Multipath Distance Vector (AOMDV). Differential Evolution (DE) is used for optimization.

Keywords: differential evolution (DE), mobile Adhoc network (MANET), Adhoc Ondemand Multi-Path Distance Vector (AOMDV), Trust and Reputation, Link Quality, Channel Utilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
32 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: M. R. Taha, S. J. Matlan, M. Mukhlisin

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: unsaturated soil, soil-water characteristic curve (SWCC), Statistical analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
31 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection

Authors: K. Premalatha, N. Arulanand

Abstract:

Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.

Keywords: metaheuristic, cuckoo search algorithm, levy’s flight, optimal weight

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
30 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

Authors: R. Gomathi, D. Sharmila

Abstract:

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Keywords: Semantic Web, PSO, RDF, query optimization, Nature inspired algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
29 Resident-Aware Green Home

Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha

Abstract:

The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.

Keywords: Machine Learning, Green Home, resident aware, resident profile, activity learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
28 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Minho Kwon, Woo-Young Jung

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: Non-linear Analysis, torsion, high-strength concrete, three-dimensional lattice

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
27 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems

Authors: I. Abuiziah, N. Shakarneh

Abstract:

Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.

Keywords: Optimization, Genetic Algorithm, Selection, Pipeline Systems, cross over

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4681
26 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Finite Element Analysis, Payloads, fuselage, topology optimization, designoptimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
25 Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications

Authors: Nathar Shah, Bu Kiat Seng

Abstract:

Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.

Keywords: Mobile Applications, Performance Evaluation, Optimization Techniques, empirical experiments, J2ME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
24 Optimization and GIS-Based Intelligent Decision Support System for Urban Transportation Systems Analysis

Authors: Mohamad K. Hasan, Hameed Al-Qaheri

Abstract:

Optimization plays an important role in most real world applications that support decision makers to take the right decision regarding the strategic directions and operations of the system they manage. Solutions for traffic management and traffic congestion problems are considered major problems that most decision making authorities for cities around the world are looking for. This review paper gives a full description of the traffic problem as part of the transportation planning process and present a view as a framework of urban transportation system analysis where the core of the system is a transportation network equilibrium model that is based on optimization techniques and that can also be used for evaluating an alternative solution or a combination of alternative solutions for the traffic congestion. Different transportation network equilibrium models are reviewed from the sequential approach to the multiclass combining trip generation, trip distribution, modal split, trip assignment and departure time model. A GIS-Based intelligent decision support system framework for urban transportation system analysis is suggested for implementation where the selection of optimized alternative solutions, single or packages, will be based on an intelligent agent rather than human being which would lead to reduction in time, cost and the elimination of the difficulty, by human being, for finding the best solution to the traffic congestion problem.

Keywords: Transportation Planning, Multiclass simultaneous transportation equilibrium models, urban transportation systems analysis, intelligent decision support system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
23 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: C. Ardil, S. Panda, N. P. Patidar, J. S. Yadav

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Stability, Genetic Algorithm, Particle Swarm Optimization, transfer function, Integral Squared Error, order reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
22 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: economic dispatch, q-learning, Non-Convex Cost Functions, Valve Point Loading Effect, Eligibility Traces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
21 Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques

Authors: Jun-Oh Kim, Seol-Min Yang, Seok-Heum Baek, Sangmo Kang

Abstract:

In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. Computational Fluid Dynamics (CFD) analysis results demonstrate the validity of this approach.

Keywords: CFD, Double-eccentric butterfly valve, Topology optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
20 Heuristic Optimization Techniques for Network Reconfiguration in Distribution System

Authors: N. Rugthaicharoencheep, S. Auchariyamet, A. Charlangsut

Abstract:

Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.

Keywords: Optimization Techniques, Distribution System, network reconfiguration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
19 Optimal Capacitor Placement in Distribution Feeders

Authors: N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Keywords: Distribution Systems, Optimization Techniques, capacitor placement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
18 Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel

Authors: Amir Hossein Daei Sorkhabi, Farid Vakili Tahami

Abstract:

In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques.

Keywords: Creep, constitutive equation, weld, Cold-drawn 304L stainless steel, Base material

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
17 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization

Authors: RAJIB KAR, Durbadal Mandal, S. P. Ghoshal, Sangeeta Mondal, Vasundhara

Abstract:

This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.

Keywords: Evolutionary Optimization, PSO, FIR filter, IPSO, Parks and McClellan Algorithm, High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
16 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: RAJIB KAR, Durbadal Mandal, Suman Kumar Saha, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: Stability, PSO, IIR Filter, RGA, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
15 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: S.C.Swain, A.K.Balirsingh, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Genetic Algorithm, Differential Evolution, low frequency oscillations, Flexible AC TransmissionSystems (FACTS), Single-machine Infinite Bus Power System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
14 Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors

Authors: Mohammad Amin Safi, Mahmud Ashrafizaadeh, Amir Ali Ashrafizaadeh

Abstract:

A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.

Keywords: graphical processing unit, Lattice Boltzmann model, Binary mixture diffusion, Optimized algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
13 Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

Authors: Adi Soeprijanto, Indar Chaerah Gunadin, Ontoseno Penangsang

Abstract:

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Keywords: generation scheduling, steady-state stability limit, REI Dimo, margin stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
12 A Probabilistic Optimization Approach for a Gas Processing Plant under Uncertain Feed Conditions and Product Requirements

Authors: G. Mesfin, M. Shuhaimi

Abstract:

This paper proposes a new optimization techniques for the optimization a gas processing plant uncertain feed and product flows. The problem is first formulated using a continuous linear deterministic approach. Subsequently, the single and joint chance constraint models for steady state process with timedependent uncertainties have been developed. The solution approach is based on converting the probabilistic problems into their equivalent deterministic form and solved at different confidence levels Case study for a real plant operation has been used to effectively implement the proposed model. The optimization results indicate that prior decision has to be made for in-operating plant under uncertain feed and product flows by satisfying all the constraints at 95% confidence level for single chance constrained and 85% confidence level for joint chance constrained optimizations cases.

Keywords: propane, butane, LPG, Feed composition, Productspecification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
11 Using Pattern Search Methods for Minimizing Clustering Problems

Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar

Abstract:

Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.

Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206