Search results for: Effective Electric Field and Effective Mobility Model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11425

Search results for: Effective Electric Field and Effective Mobility Model.

11425 Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
11424 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: Electric field, energy transmission line, finite element method, pylon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
11423 Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by using the conventional drift-diffusion equation. Effective electron mobility model includes three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as ballistic phenomena in the pocket implanted n-MOSFET. The model is simulated for various pocket profile and device parameters as well as for various bias conditions. Simulation results show that the subthreshold drain current data matches the experimental data already published in the literature.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Subthreshold Drain Current and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
11422 Localising Gauss's Law and the Electric Charge Induction on a Conducting Sphere

Authors: Sirapat Lookrak, Anol Paisal

Abstract:

Space debris has numerous manifestations including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane so the Gaussian surface is a very small cylinder and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless manoeuvring space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done.

Keywords: Near-field approximation, far-field approximation, localized Gauss’s law, electric charge density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
11421 Educational Mobility as a Factor of Tourism Development in the Regional University

Authors: K. Lisinchuk

Abstract:

An effective approach to the management of international educational mobility in regional universities with the purpose of increasing tourist activity in the region is considered.

Keywords: Export and import of tourist and educational services, international academic mobility, regional tourist activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
11420 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
11419 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
11418 Electric Field Investigation in MV PILC Cables with Void Defect

Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou

Abstract:

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.

Keywords: MV PILC cables, Finite Element Method /COMSOL Multiphysics, Electric Field Stress, Partial Discharge Degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3512
11417 Impact Analysis of Transportation Modal Shift on Regional Energy Consumption and Environmental Level: Focused on Electric Automobiles

Authors: Hong Bae Kim, Chang Ho Hur

Abstract:

Many governments have tried to reduce CO2 emissions which are believed to be the main cause for global warming. The deployment of electric automobiles is regarded as an effective way to reduce CO2 emissions. The Korean government has planned to deploy about 200,000 electric automobiles. The policy for the deployment of electric automobiles aims at not only decreasing gasoline consumption but also increasing electricity production. However, if an electricity consuming regions is not consistent with an electricity producing region, the policy generates environmental problems between regions. Hence, this paper has established the energy multi-region input-output model to specifically analyze the impacts of the deployment of electric automobiles on regional energy consumption and CO2 emissions. Finally, the paper suggests policy directions regarding the deployment of electric automobiles.

Keywords: Electric automobiles, CO2 emissions, regional imbalances in electricity production and consumption, energy multi-region input-output model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
11416 Analysis of Electromagnetic Field Effects Using FEM for Transmission Lines Transposition

Authors: S. Tupsie, A. Isaramongkolrak, P. Pao-la-or

Abstract:

This paper presents the mathematical model of electric field and magnetic field in transmission system, which performs in second-order partial differential equation. This research has conducted analyzing the electromagnetic field radiating to atmosphere around the transmission line, when there is the transmission line transposition in case of long distance distribution. The six types of 500 kV transposed HV transmission line with double circuit will be considered. The computer simulation is applied finite element method that is developed by MATLAB program. The problem is considered to two dimensions, which is time harmonic system with the graphical performance of electric field and magnetic field. The impact from simulation of six types long distance distributing transposition will not effect changing of electric field and magnetic field which surround the transmission line.

Keywords: Transposition, Electromagnetic Field, Finite Element Method (FEM), Transmission Line, Computer Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3955
11415 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
11414 A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin

Authors: F. Barzegar, M. H. Sheikhi

Abstract:

In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.

Keywords: Avalanche Photodiode, Physical Model, MultiquantumWell, Split Step Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
11413 Two Approaches to Code Mobility in an Agent-based E-commerce System

Authors: Costin Badica, Maria Ganzha, Marcin Paprzycki

Abstract:

Recently, a model multi-agent e-commerce system based on mobile buyer agents and transfer of strategy modules was proposed. In this paper a different approach to code mobility is introduced, where agent mobility is replaced by local agent creation supplemented by similar code mobility as in the original proposal. UML diagrams of agents involved in the new approach to mobility and the augmented system activity diagram are presented and discussed.

Keywords: Agent system, agent mobility, code mobility, e-commerce, UML formalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
11412 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.

Keywords: Ground impedance, horizontal electric field, lightning, transient propagation, vertical electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
11411 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: Copper plates, Electric field distribution, Dielectric heating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
11410 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: Debye length, double layer polarization, electrophoresis, mobility reversal, soft particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
11409 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

Authors: Wisuwat Songnuan, Phumin Kirawanich

Abstract:

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).

Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
11408 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
11407 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences

Authors: Tamer ElSerafi

Abstract:

In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.

Keywords: Sustainable mobility, urban mobility, mobility management, historic districts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
11406 Role of Viscosity Ratio in Liquid-Liquid Jets under Radial Electric Field

Authors: Siddharth Gadkari, Rochish Thaokar

Abstract:

The effect of viscosity ratio (λ, defined as viscosity of surrounding medium/viscosity of fluid jet) on stability of axisymmetric (m=0) and asymmetric (m=1) modes of perturbation on a liquid-liquid jet in presence of radial electric field (E0 ), is studied using linear stability analysis. The viscosity ratio is shown to have a damping effect on both the modes of perturbation. However the effect was found more pronounced for the m=1 mode as compared to m=1 mode. Investigating the effect of both E0 and λ simultaneously, an operating diagram is generated, which clearly shows the regions of dominance of the two modes for a range of electric field and viscosity ratio values.

Keywords: liquid-liquid jet, axisymmetric perturbation, asymmetric perturbation, radial electric field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
11405 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device

Authors: Muhibul Haque Bhuyan

Abstract:

This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.

Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319
11404 Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum

Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta

Abstract:

Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.

Keywords: Flashover, SEM, Electron Bombardment, Electric Field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
11403 Coloured Reconfigurable Nets for Code Mobility Modeling

Authors: Kahloul Laid, Chaoui Allaoua

Abstract:

Code mobility technologies attract more and more developers and consumers. Numerous domains are concerned, many platforms are developed and interest applications are realized. However, developing good software products requires modeling, analyzing and proving steps. The choice of models and modeling languages is so critical on these steps. Formal tools are powerful in analyzing and proving steps. However, poorness of classical modeling language to model mobility requires proposition of new models. The objective of this paper is to provide a specific formalism “Coloured Reconfigurable Nets" and to show how this one seems to be adequate to model different kinds of code mobility.

Keywords: Code mobility, modelling mobility, labelled reconfigurable nets, Coloured reconfigurable nets, mobile code design paradigms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
11402 Unified Structured Process for Health Analytics

Authors: Supunmali Ahangama, Danny Chiang Choon Poo

Abstract:

Health analytics (HA) is used in healthcare systems for effective decision making, management and planning of healthcare and related activities. However, user resistances, unique position of medical data content and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. Success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose a HA process model with features from rational unified process (RUP) model and agile methodology.

Keywords: Agile methodology, health analytics, unified process model, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
11401 Stability Issues on an Implemented All-Pass Filter Circuitry

Authors: Ákos Pintér, István Dénes

Abstract:

The so-called all-pass filter circuits are commonly used in the field of signal processing, control and measurement. Being connected to capacitive loads, these circuits tend to loose their stability; therefore the elaborate analysis of their dynamic behavior is necessary. The compensation methods intending to increase the stability of such circuits are discussed in this paper, including the socalled lead-lag compensation technique being treated in detail. For the dynamic modeling, a two-port network model of the all-pass filter is being derived. The results of the model analysis show, that effective lead-lag compensation can be achieved, alone by the optimization of the circuit parameters; therefore the application of additional electric components are not needed to fulfill the stability requirement.

Keywords: all-pass filter, frequency compensation, stability, linear modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
11400 Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles

Authors: A. Tashakori, M. Ektesabi

Abstract:

Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.

Keywords: BLDC motor, PWM switching technique, in-wheel technology, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4775
11399 Electrical Field Around the Overhead Transmission Lines

Authors: S.S. Razavipour, M. Jahangiri, H. Sadeghipoor

Abstract:

In this paper, the computation of the electrical field distribution around AC high-voltage lines is demonstrated. The advantages and disadvantages of two different methods are described to evaluate the electrical field quantity. The first method is a seminumerical method using the laws of electrostatic techniques to simulate the two-dimensional electric field under the high-voltage overhead line. The second method which will be discussed is the finite element method (FEM) using specific boundary conditions to compute the two- dimensional electric field distributions in an efficient way.

Keywords: Electrical field, unloaded transmission lines, finite element method, electrostatic images technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8320
11398 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
11397 Impact of Nonthermal Pulsed Electric Field on Bioactive Compounds and Browning Activity in Emblica officinalis Juice

Authors: Vasudha Bansal, M. L. Singla, C. Ghanshyam

Abstract:

The effect of nonthermal pulsed electric field (PEF) and thermal treatment (90⁰C for 60s) was studied on quality parameters of emblica officinalis juice for the period of 6 weeks at 4⁰C using monopolar rectangular pulse of 1µs width. The PEF treatment was given using static chamber at 24kV/cm for 500µs. The quality of emblica officinalis juice was investigated in terms of non enzymatic browning index (NEBI), 5-hydroxymethyl-2-furfural (HMF), total polyphenol content and antioxidant capacity. ⁰Brix, pH and conductivity were evaluated as physical parameters. The aim of the work was to investigate the effect of PEF on the retention of bioactive compounds and retardation of browning activity. The results showed that conventional thermal treatment had led to a significant (p < 0.05) decrease of 48.15% in polyphenol content (129.56 mg of GAE L-1), with higher NEBI and HMF formation (p < 0.05) whilst PEF suppressed NEBI and retained higher polyphenol compounds (168.59 mg GAE L-1) with limiting the loss to 32.56% along maximum free radical scavenging activity (92.07%). However, pH, ⁰brix and electrical conductivity of treated juice samples remain unaffected. Therefore, PEF can be considered as an effective nonthermal treatment for retaining bioactive compounds along suppressing browning of emblica juice.

 

Keywords: Emblica officinalis juice, Free radical scavenging activity, Pulsed electric field, Total polyphenol content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
11396 Electric Field Effect on the Rise of Single Bubbles during Boiling

Authors: N. Masoudnia, M. Fatahi

Abstract:

An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.

Keywords: Single bubbles, electric field, boiling, effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142