Search results for: Learning activity
381 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937380 Effect of Organic-waste Compost Addition on Leaching of Mineral Nitrogen from Arable Land and Plant Production
Authors: Jakub Elbl, Lukas Plošek, Antonín Kintl, Jaroslav Záhora, Jitka Přichystalová, Jaroslav Hynšt
Abstract:
Application of compost in agriculture is very desirable worldwide. In the Czech Republic, compost is the most often used to improve soil structure and increase the content of soil organic matter, but the effects of compost addition on the fate of mineral nitrogen are only scarcely described. This paper deals with possibility of using combined application of compost, mineral and organic fertilizers to reduce the leaching of mineral nitrogen from arable land. To demonstrate the effect of compost addition on leaching of mineral nitrogen, we performed the pot experiment. As a model crop, Lactuca sativa L. was used and cultivated for 35 days in climate chamber in thoroughly homogenized arable soil. Ten variants of the experiment were prepared; two control variants (pure arable soil and arable soil with added compost), four variants with different doses of mineral and organic fertilizers and four variants of the same doses of mineral and organic fertilizers with the addition of compos. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of soluble humic substances and compost to soil samples, about 417% in comparison with the control variant. Application of these organic compounds also supported microbial activity and nitrogen immobilization documented by the highest soil respiration and by the highest value of the index of nitrogen availability. The production of plant biomass after this application was not the highest due to microbial competition for the nutrients in soil, but was 24% higher in comparison with the control variant. To support these promising results the experiment should be repeated in field conditions.
Keywords: Nitrogen, Compost, Salad, Arable land.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070379 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117378 Artificial Neural Networks Application to Improve Shunt Active Power Filter
Authors: Rachid.Dehini, Abdesselam.Bassou, Brahim.Ferdi
Abstract:
Active Power Filters (APFs) are today the most widely used systems to eliminate harmonics compensate power factor and correct unbalanced problems in industrial power plants. We propose to improve the performances of conventional APFs by using artificial neural networks (ANNs) for harmonics estimation. This new method combines both the strategies for extracting the three-phase reference currents for active power filters and DC link voltage control method. The ANNs learning capabilities to adaptively choose the power system parameters for both to compute the reference currents and to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter. To investigate the performance of this identification method, the study has been accomplished using simulation with the MATLAB Simulink Power System Toolbox. The simulation study results of the new (SAPF) identification technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability.Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035377 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour
Abstract:
Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832376 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques
Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa
Abstract:
In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582375 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510374 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670373 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)
Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta
Abstract:
Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.
Keywords: Advanced oxidation process, ferrate(VI) ion, oils and greases removal, produced water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793372 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: Distillation, machine learning, neural networks, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732371 Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis
Authors: Lalita Saeaeh, Sirirat Jitkarnka
Abstract:
Pyrolysis of waste tire is one of alternative technique to produce petrochemicals, such as light olefins, mixed C4, and monoaromatics. Noble metals supported on acid zeolite catalysts were reported as potential catalysts to produce the high valuable products from waste tire pyrolysis. Especially, Pd supported on HBeta gave a high yield of olefins, mixed C4, and mono-aromatics. Due to the high prices of noble metals, the objective of this work was to investigate whether or not a non-noble Ni metal can be used as a substitute of a noble metal, Pd, supported on HBeta as a catalyst for waste tire pyrolysis. Ni metal was selected in this work because Ni has high activity in cracking, isomerization, hydrogenation and the ring opening of hydrocarbons Moreover, Ni is an element in the same group as Pd noble metal, which is VIIIB group, aiming to produce high valuable products similarly obtained from Pd. The amount of Ni was varied as 5, 10, and 20% by weight, for comparison with a fixed 1 wt% Pd, using incipient wetness impregnation. The results showed that as a petrochemical-producing catalyst, 10%Ni/HBeta performed better than 1%Pd/HBeta because it did not only produce the highest yield of olefins and cooking gases, but the yields were also higher than 1%Pd/HBeta. 5%Ni/HBeta can be used as a substitute of 1%Pd/HBeta for similar crude production because its crude contains the similar amounts of naphtha and saturated HCs, although it gave no concentration of light mono-aromatics (C6-C11) in the oil. Additionally, 10%Ni/HBeta that gave high olefins and cooking gases was found to give a fairly high concentration of the light mono-aromatics in the oil.Keywords: Catalytic pyrolysis; Waste tire; Pd; Ni; HBeta
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849370 Analysis and Remediation of Fecal Coliform Bacteria Pollution in Selected Surface Water Bodies of Enugu State of Nigeria
Authors: Chime Charles C., Ikechukwu Alexander Okorie, Ekanem E.J., Kagbu J. A.
Abstract:
The assessment of surface waters in Enugu metropolis for fecal coliform bacteria was undertaken. Enugu urban was divided into three areas (A1, A2 and A3), and fecal coliform bacteria analysed in the surface waters found in these areas for four years (2005-2008). The plate count method was used for the analyses. Data generated were subjected to statistical tests involving; Normality test, Homogeneity of variance test, correlation test, and tolerance limit test. The influence of seasonality and pollution trends were investigated using time series plots. Results from the tolerance limit test at 95% coverage with 95% confidence, and with respect to EU maximum permissible concentration show that the three areas suffer from fecal coliform pollution. To this end, remediation procedure involving the use of saw-dust extracts from three woods namely; Chlorophora-Excelsa (C-Excelsa),Khayan-Senegalensis,(CSenegalensis) and Erythrophylum-Ivorensis (E-Ivorensis) in controlling the coliforms was studied. Results show that mixture of the acetone extracts of the woods show the most effective antibacterial inhibitory activities (26.00mm zone of inhibition) against E-coli. Methanol extract mixture of the three woods gave best inhibitory activity (26.00mm zone of inhibition) against S-areus, and 25.00mm zones of inhibition against E-Aerogenes. The aqueous extracts mixture gave acceptable zones of inhibitions against the three bacteria organisms.Keywords: Coliform bacteria, Pollution, Remediation, Saw-dust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041369 SVM-Based Detection of SAR Images in Partially Developed Speckle Noise
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of SAR (synthetic aperture radar) images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to real SAR images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected SAR images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (the detection hypotheses) in the original images.Keywords: Least Square-Support Vector Machine, SyntheticAperture Radar. Partially Developed Speckle, Multi-Look Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537368 Perceived Determinants of Obesity among Primary School Pupils in Eti Osa Local Government Area of Lagos State, Nigeria
Authors: B. O. Diyaolu, E. A. Okebanjo
Abstract:
Children in today’s world need attention and care even with their physique as obesity is also at the increased. Several factors can be responsible for obesity in children and adequate attention is paramount in other not to accommodate it into adolescent period. This study investigated perceived determinants of obesity among primary school pupils in Eti Osa Local Government area of Lagos State. Descriptive survey research design was used and population was all obese pupils in Eti Osa Local Government Area of Lagos State. 92 pupils were selected from randomly picked 12 primary schools while purposive sampling technique was used to pick primary 4-6 pupils. With the aid of body mass index (BMI) and age percentile chart the obese pupils were selected. The instrument for the study was a self-developed and structured questionnaire on perceived determinant of obesity. The questionnaire was divided into three sections. The Cronbach’s Alpha reliability coefficient of 0.74 was obtained. The hypotheses were tested at 0.05 significant levels. The completed questionnaire was collated coded and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that physical activities and parental influences were determinant of obesity. Physical activity is essential in reducing the rate of obesity in Eti Osa Local Government Area both at home and within the school environment. Primary schools need to create more playing ground for pupils to exercise themselves. Parents need to cater for their children diet ensuring not just the quantity but the quality as well.
Keywords: Feeding pattern, obese pupils, parental influence, physical activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610367 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System
Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu
Abstract:
Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.
Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673366 Development of Sports Nation on the Way of Health Management
Authors: Beatrix Faragó, Zsolt Szakály, Ágnes Kovácsné Tóth, Csaba Konczos, Norbert Kovács, Zsófia Pápai, Tamás Kertész
Abstract:
The future of the nation is the embodiment of a healthy society. A key segment of government policy is the development of health and a health-oriented environment. As a result, sport as an activator of health is an important area for development. In Hungary, sport is a strategic sector with the aim of developing a sports nation. The function of sport in the global society is multifaceted, which is manifested in both social and economic terms. The economic importance of sport is gaining ground in the world, with implications for Central and Eastern Europe. Smaller states, such as Hungary, cannot ignore the economic effects of exploiting the effects of sport. The relationship between physical activity and health is driven by the health economy towards the nation's economic factor. In our research, we analyzed sport as a national strategy sector and its impact on age groups. By presenting the current state of health behavior, we get an idea of the directions where development opportunities require even more intervention. The foundation of the health of a nation is the young age group, whose shaping of health will shape the future generation. Our research was attended by university students from the Faculty of Health and Sports Sciences who will be experts in the field of health in the future. The other group is the elderly, who are a growing social group due to demographic change and are a key segment of the labor market and consumer society. Our study presents the health behavior of the two age groups, their differences, and similarities. The survey also identifies gaps in the development of a health management strategy that national strategies should take into account.
Keywords: Competitiveness, health behavior, health economy, health management, sports nation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015365 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493364 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162363 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System
Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma
Abstract:
Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432362 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Authors: Sunita Jahirabadkar, Parag Kulkarni
Abstract:
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.
Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018361 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy
Authors: A. Ghaffari, A. S. Mostafavi
Abstract:
Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506360 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.
Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781359 An Analysis of Uncoupled Designs in Chicken Egg
Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi
Abstract:
Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.Keywords: Uncoupled design, axiomatic design, nature design, design evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683358 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838357 Knowledge Transfer in Industrial Clusters
Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha
Abstract:
This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.
Keywords: Industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085356 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks
Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123355 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778354 Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile
Authors: J.R. Quevedo, E. Montañés, J. Ranilla, A. Bahamonde
Abstract:
The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.Keywords: artificial intelligence, clustering, organizingseminars, student profile
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366353 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.
Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3545352 Parental and Related Factors Affecting Students’ Academic Achievement in Oyo State, Nigeria
Authors: Oladele K. Ogunsola, Kazeem A. Osuolale, Akintayo O. Ojo
Abstract:
Many factors influence the educational outcome of students. Some of these have been studied by researchers with many emphasizing the role of students, schools, governments, peer groups and so on. More often than not, some of these factors influencing the academic achievement of the students have been traced back to parents and family; being the primary platform on which learning not only begins but is nurtured, encouraged and developed which later transforms to the performance of the students. This study not only explores parental and related factors that predict academic achievement through the review of relevant literatures but also, investigates the influence of parental background on the academic achievement of senior secondary school students in Ibadan North Local Government Area of Oyo State, Nigeria. As one of the criteria of the quality of education, students’ academic achievement was investigated because it is most often cited as an indicator of school effectiveness by school authorities and educationists. The data collection was done through interviews and use of well-structured questionnaires administered to one hundred students (100) within the target local government. This was statistically analysed and the result showed that parents’ attitudes towards their children’s education had significant effect(s) on students’ self-reporting of academic achievement. However, such factors as parental education and socioeconomic background had no significant relationship with the students’ self-reporting of academic achievement.Keywords: Academic attainment, Parental factors, students, Oyo State, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8360