Search results for: Dynamic performance model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12667

Search results for: Dynamic performance model

9937 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia

Abstract:

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.

Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
9936 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
9935 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury

Abstract:

Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.

Keywords: Beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
9934 Benchmarking of Pentesting Tools

Authors: Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

The benchmarking of tools for dynamic analysis of vulnerabilities in web applications is something that is done periodically, because these tools from time to time update their knowledge base and search algorithms, in order to improve their accuracy. Unfortunately, the vast majority of these evaluations are made by software enthusiasts who publish their results on blogs or on non-academic websites and always with the same evaluation methodology. Similarly, academics who have carried out this type of analysis from a scientific approach, the majority, make their analysis within the same methodology as well the empirical authors. This paper is based on the interest of finding answers to questions that many users of this type of tools have been asking over the years, such as, to know if the tool truly test and evaluate every vulnerability that it ensures do, or if the tool, really, deliver a real report of all the vulnerabilities tested and exploited. This kind of questions have also motivated previous work but without real answers. The aim of this paper is to show results that truly answer, at least on the tested tools, all those unanswered questions. All the results have been obtained by changing the common model of benchmarking used for all those previous works.

Keywords: Cybersecurity, IDS, security, web scanners, web vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
9933 Routing Load Analysis over 802.11 DCF of Reactive Routing Protocols DSR and DYMO

Authors: Parma Nand, S.C. Sharma

Abstract:

The Mobile Ad-hoc Network (MANET) is a collection of self-configuring and rapidly deployed mobile nodes (routers) without any central infrastructure. Routing is one of the potential issues. Many routing protocols are reported but it is difficult to decide which one is best in all scenarios. In this paper on demand routing protocols DSR and DYMO based on IEEE 802.11 DCF MAC protocol are examined and characteristic summary of these routing protocols is presented. Their performance is analyzed and compared on performance measuring metrics throughput, dropped packets due to non availability of routes, duplicate RREQ generated for route discovery and normalized routing load by varying CBR data traffic load using QualNet 5.0.2 network simulator.

Keywords: Adhoc networks, wireless networks, CBR, routingprotocols, route discovery, simulation, performance evaluation, MAC, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
9932 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as ground granulated blast-furnace slag (GGBFS) and limestone to replace Portland cement (PC) is a promising method to reduce the carbon emissions from cement production. To efficiently use GGBFS and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., No.1 fine GGBFS, medium PC, and coarse limestone; No.2 fine limestone, medium PC, and coarse GGBFS; No.3. fine PC, medium GGBFS, and coarse limestone. The binder contents in the ternary cements were 50% PC, 40% slag, and 10% limestone. The mortar performance of the three ternary cements was investigated in terms of flow table value, strength at 28 days, carbonation resistance and non-steady state chloride migration resistance at 28 days. Results show that ternary cement with fine limestone (No.2) has the weakest performance among the three ternary cements. Ternary cements with fine slag (No.1) show an overall comparable performance to ternary cement with fine PC (No.3). Moreover, the chloride migration coefficient of ternary cements with fine slag (No.1) is significantly lower than the other two ternary cements.

Keywords: Limestone, particle size distribution, slag, ternary cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
9931 Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Authors: Asok Adak, Debabrata Mazumder, Pratip Bandyopadhyay

Abstract:

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.

Keywords: Anaerobic digestion, municipal solid waste (MSW), process design model, simulation study, hydraulic retention time(HRT), solid retention time (SRT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
9930 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung

Abstract:

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Keywords: Weir, Finite Element, Infinite Element, Nonlinear, Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
9929 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: Liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
9928 Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies

Authors: Sangsuree Vasupongayya

Abstract:

Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.

Keywords: deviation, fair share, discrepancy search, priority scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
9927 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
9926 The Impact of Training Method on Programming Learning Performance

Authors: Chechen Liao, Chin Yi Yang

Abstract:

Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.

Keywords: Learning performance, programming learning, TDD, training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
9925 A Model-Driven Approach of User Interface for MVP Rich Internet Application

Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract:

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

Keywords: Code generation, Design Pattern, metamodel, Model Driven Engineering, MVP, Rich Internet Application, transformation, User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
9924 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
9923 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
9922 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
9921 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: Functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
9920 Performance Improvements of DSP Applications on a Generic Reconfigurable Platform

Authors: Michalis D. Galanis, Gregory Dimitroulakos, Costas E. Goutis

Abstract:

Speedups from mapping four real-life DSP applications on an embedded system-on-chip that couples coarsegrained reconfigurable logic with an instruction-set processor are presented. The reconfigurable logic is realized by a 2-Dimensional Array of Processing Elements. A design flow for improving application-s performance is proposed. Critical software parts, called kernels, are accelerated on the Coarse-Grained Reconfigurable Array. The kernels are detected by profiling the source code. For mapping the detected kernels on the reconfigurable logic a prioritybased mapping algorithm has been developed. Two 4x4 array architectures, which differ in their interconnection structure among the Processing Elements, are considered. The experiments for eight different instances of a generic system show that important overall application speedups have been reported for the four applications. The performance improvements range from 1.86 to 3.67, with an average value of 2.53, compared with an all-software execution. These speedups are quite close to the maximum theoretical speedups imposed by Amdahl-s law.

Keywords: Reconfigurable computing, Coarse-grained reconfigurable array, Embedded systems, DSP, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
9919 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System

Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja

Abstract:

The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.

Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
9918 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
9917 A Comparative Analysis of E-Government Quality Models

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

Many quality models have been used to measure egovernment portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.

Keywords: E-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649
9916 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three dimensional finite element models in assessing debonding damage in composite sandwich panels.

Keywords: Debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
9915 Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB)

Authors: Liyana Zahid, Mohd Fareq Abd Malek, Ee Meng Cheng, Wei Wen Liu, Yeng Seng Lee, Muhammad Nadeem Iqbal, Fwen Hoon Wee, Farrah Salwani Abdullah

Abstract:

One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared.

Keywords: Microwave Absorber, Reflection Loss, Sugarcane Bagasse (SCB), X- Band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
9914 Effect of Different BER Performance Comparison of MAP and ML Detection

Authors: Naveed Ur Rehman, Rehan Jamil, Irfan Jamil

Abstract:

In this paper, we regard as a coded transmission over a frequency-selective channel. We plan to study analytically the convergence of the turbo-detector using a maximum a posteriori (MAP) equalizer and a MAP decoder. We demonstrate that the densities of the maximum likelihood (ML) exchanged during the iterations are e-symmetric and output-symmetric. Under the Gaussian approximation, this property allows to execute a one-dimensional scrutiny of the turbo-detector. By deriving the analytical terminology of the ML distributions under the Gaussian approximation, we confirm that the bit error rate (BER) performance of the turbo-detector converges to the BER performance of the coded additive white Gaussian noise (AWGN) channel at high signal to noise ratio (SNR), for any frequency selective channel.

Keywords: MAP, ML, SNR, Decoder, BER, Coded transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
9913 Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error

Authors: Bubaker M. F. Bushofa, Abdel Hafez A. Azab

Abstract:

This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.

Keywords: Adaptive Control System, Discrete Parameter Tracking, Discrete Time Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
9912 Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

Authors: K. Saravanan

Abstract:

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Keywords: UPFC, SMES, power system stability, flexible ac transmission systems, fuel cells, chopper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
9911 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model

Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy

Abstract:

A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
9910 A Context-Aware Supplier Selection Model

Authors: Mohammadreza Razzazi, Maryam Bayat

Abstract:

Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.

Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
9909 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Authors: Arkady Bolotin

Abstract:

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
9908 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.

Keywords: Mathematical model, Oil-Water, Pipe flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289