Search results for: wind fragility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 530

Search results for: wind fragility

290 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema

Abstract:

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
289 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
288 Management of Air Pollutants from Point Sources

Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde

Abstract:

Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.

Keywords: DBMS, NO2, SO2, Wind rose plots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
287 Climatic Factors Affecting on Influenza Casesin Nakhon Si Thammarat

Authors: S. Chumkiew, W. Srisang, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated the climatic factors associated with Influenza incidence in Nakhon Si Thammarat, Southern Thailand. Climatic factors comprised of the amount of rainfall, percent of rainy days, relative humidity, wind speed, maximum, minimum temperatures and temperature difference. A multiple stepwise regression technique was used to fit the statistical model. The result showed that the temperature difference and percent of rainy days were positively associated with Influenza incidence in Nakhon Si Thammarat.

Keywords: Influenza, Climatic Factor, Relative Humidity, Rainy day, Wind Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
286 Techno-Economic Prospects of High Wind Energy Share in Remote vs. Interconnected Island Grids

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

On the basis of comparative analysis of alternative “development scenarios” for electricity generation, the main objective of the present study is to investigate the techno-economic viability of high wind energy (WE) use at the local (island) level. An integrated theoretical model is developed based on first principles assuming two main possible scenarios for covering future electrification needs of a medium–sized Greek island, i.e. Lesbos. The first scenario (S1), assumes that the island will keep using oil products as the main source for electricity generation. The second scenario (S2) involves the interconnection of the island with the mainland grid to satisfy part of the electricity demand, while remarkable WE penetration is also achieved. The economic feasibility of the above solutions is investigated in terms of determining their Levelized Cost of Energy (LCOE) for the time-period 2020-2045, including also a sensitivity analysis on the worst/reference/best Cases. According to the results obtained, interconnection of Lesbos Island with the mainland grid (S2) presents considerable economic interest in comparison to autonomous development (S1) with WE having a prominent role to this effect.

Keywords: Electricity generation cost, levelized cost of energy, mainland, wind energy surplus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
285 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
284 Seismic Behavior of Suction Caisson Foundations

Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli

Abstract:

Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.

Keywords: Liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
283 Application of Fuzzy Logic Approach for an Aircraft Model with and without Winglet

Authors: Altab Hossain, Ataur Rahman, Jakir Hossen, A.K.M. P. Iqbal, SK. Hasan

Abstract:

The measurement of aerodynamic forces and moments acting on an aircraft model is important for the development of wind tunnel measurement technology to predict the performance of the full scale vehicle. The potentials of an aircraft model with and without winglet and aerodynamic characteristics with NACA wing No. 65-3- 218 have been studied using subsonic wind tunnel of 1 m × 1 m rectangular test section and 2.5 m long of Aerodynamics Laboratory Faculty of Engineering (University Putra Malaysia). Focusing on analyzing the aerodynamic characteristics of the aircraft model, two main issues are studied in this paper. First, a six component wind tunnel external balance is used for measuring lift, drag and pitching moment. Secondly, Tests are conducted on the aircraft model with and without winglet of two configurations at Reynolds numbers 1.7×105, 2.1×105, and 2.5×105 for different angle of attacks. Fuzzy logic approach is found as efficient for the representation, manipulation and utilization of aerodynamic characteristics. Therefore, the primary purpose of this work was to investigate the relationship between lift and drag coefficients, with free-stream velocities and angle of attacks, and to illustrate how fuzzy logic might play an important role in study of lift aerodynamic characteristics of an aircraft model with the addition of certain winglet configurations. Results of the developed fuzzy logic were compared with the experimental results. For lift coefficient analysis, the mean of actual and predicted values were 0.62 and 0.60 respectively. The coreelation between actual and predicted values (from FLS model) of lift coefficient in different angle of attack was found as 0.99. The mean relative error of actual and predicted valus was found as 5.18% for the velocity of 26.36 m/s which was found to be less than the acceptable limits (10%). The goodness of fit of prediction value was 0.95 which was close to 1.0.

Keywords: Wind tunnel; Winglet; Lift coefficient; Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
282 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: CFD simulations, Natural ventilation, Microclimate, Wind environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751
281 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives

Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri

Abstract:

Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.

Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
280 Source Direction Detection based on Stationary Electronic Nose System

Authors: Jie Cai, David C. Levy

Abstract:

Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.

Keywords: Electronic nose, Nature wind situation, Source direction detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
279 Prognostic and Diagnostic Modes of Mathematical Model for the Pre-operation of Suspended Sediment Transport model in Estuaries and Coastal areas

Authors: Worachat Wannawong, Chaiwat Ekkawatpanit, Sanit Wongsa

Abstract:

Both prognostic and diagnostic modes of a 3D baroclinic model in hydrodynamic and sediment transport models of the Princeton Ocean Model (POM) were conducted to separate prognose and diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the rivers to the Gulf of Thailand (GoT). Both transport modes of suspended sediment distribution in the GoT were numerically simulated. It could be concluded that the suspended sediment discharged from the rivers around the GoT. Most of sediments in estuaries and coastal areas are deposited outside the GoT under the condition of wind-driven current, and very small amount of the sediments of them are transported faraway. On the basis of wind forcing, sediments from the lower GoT to the upper GoT are mainly transported south-northwestward and also continuously moved north-southwestward. An obvious 3D characteristic of suspended sediment transport is produced in the wind-driven current residual circulation condition. In this study, the transport patterns at the third layer are generally consistent with the typhoon-induced strong currents in two case studies of Typhoon Linda 1997. The case studies presented the prognostic and diagnostic modes during 00UTC28OCT1997 to 12UTC06NOV1997 in a short period with the current condition for pre-operation of the suspended sediment transport model in estuaries and coastal areas.

Keywords: prognostic, diagnostic, baroclinic, sediment transport, estuaries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
278 Experimental Investigation of S-Rotors in Open and Bounded Flows

Authors: Hussain H. Al-Kayiem, Goh Jin Ming

Abstract:

The common practice of operating S-rotor is in an open environment; however there are times when the rotor is installed in a bounded environment and there might be changes in the performance of the rotor. This paper presents the changes in the performance of S-rotor when operated in bounded flows. The investigation was conducted experimentally to compare the performance of the rotors in bounded environment against open environment. Three different rotors models were designed, fabricated and subjected to experimental measurements. All of the three models were having 600 mm height and 300 mm Diameter. They were tested in three different flow environments; namely: partially bounded environment, fully bounded environment and open environment. Rotors were found to have better starting up capabilities when operated in bounded environment. Apart from that, all rotors manage to achieve higher Power and Torque Coefficients at a higher Tip Speed Ratio as compared to the open environment.

Keywords: Bounded Flows, Savonius Rotor, Wind Turbine, Wind energy, VAWT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
277 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
276 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: A. Boualouch, A. Essadki, T. Nasser, A. Boukhriss, A. Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and slidingmode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: Backstipping, DFIG, power control, sliding-mode, WESC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
275 Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa J. Noronha, Faber A. Saldanha

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: Cohesive zone modeling, fatigue, segmentation, wind turbine blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
274 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, Moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
273 Real-time Interactive Ocean Wave Simulation using Multithread

Authors: K. Prachumrak, T. Kanchanapornchai

Abstract:

This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.

Keywords: Interactive wave, ocean wave, wind effect, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
272 High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper, we used a high-quality anodization technique to make a colored wind chime with a nano-tube structure anodic film, which controls the length-to-diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by an anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on an aluminum alloy surface. The hard anodization film has high hardness, high insulation, high-temperature resistance, good corrosion resistance, colors, and mass production properties that can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also provides in-depth research and a detailed discussion of the related process of aluminum alloy surface hard anodizing, including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization include using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte and controlling the temperature, time, current density, and final voltage to obtain the anodic film. In the results of the experiments, the properties of the anodic film, including thickness, hardness, insulation, and corrosion characteristics, the microstructure of the anode film were measured, and the hard anodization efficiency was calculated. Thereby it can obtain different transmission speeds of sound in the aluminum rod. And, different audio sounds can present on the aluminum rod. Another feature of the present experiment result is the use of the anodizing method and dyeing method, laser engraving patterning and electrophoresis method to make good-quality colored aluminum wind chimes.

Keywords: Anodization, aluminum, wind chime, nano-tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82
271 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: Dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
270 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth

.

Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
269 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

Authors: Young-Tae Lee, Hee-Chang Lim

Abstract:

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979
268 Combined Hashing/Watermarking Method for Image Authentication

Authors: Vlado Kitanovski, Dimitar Taskovski, Sofija Bogdanova

Abstract:

In this paper we present a combined hashing/watermarking method for image authentication. A robust image hash, invariant to legitimate modifications, but fragile to illegitimate modifications is generated from the local image characteristics. To increase security of the system the watermark is generated using the image hash as a key. Quantized Index Modulation of DCT coefficients is used for watermark embedding. Watermark detection is performed without use of the original image. Experimental results demonstrate the effectiveness of the presented method in terms of robustness and fragility.

Keywords: authentication, blind watermarking, image hash, semi-fragile watermarking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
267 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions

Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant

Abstract:

The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.

Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
266 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: Energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
265 Steady-State Analysis and Control of Double Feed Induction Motor

Authors: H. Sediki, Dj. Ould Abdeslam, T. Otmane-cherif, A. Bechouche, K. Mesbah

Abstract:

This paper explores steady-state characteristics of grid-connected doubly fed induction motor (DFIM) in case of unity power factor operation. Based on the synchronized mathematical model, analytic determination of the control laws is presented and illustrated by various figures to understand the effect of the applied rotor voltage on the speed and the active power. On other hand, unlike previous works where the stator resistance was neglected, in this work, stator resistance is included such that the equations can be applied to small wind turbine generators which are becoming more popular. Finally the work is crowned by integration of the studied induction generator in a wind system where an open loop control is proposed confers a remarkable simplicity of implementation compared to the known methods.

Keywords: DFIM, equivalent circuit, induction machine, steady state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
264 Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model

Authors: M. Raciti Castelli, A. Fedrigo, E. Benini

Abstract:

A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.

Keywords: Wind turbine, BE-M, dynamic stall, streamtube expansion, airfoil finite aspect ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25104
263 Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

Authors: S. Dehghan, B. Kiani, A. Kazemi, A. Parizad

Abstract:

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

Keywords: Distributed Generation, Fuel Cell, HS, Hybrid Power Plant, PSO, Photovoltaic, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
262 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong

Abstract:

An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.

Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
261 Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable

Authors: Christopher Frank, Yoshiki Miyairi

Abstract:

A Jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine.

Keywords: Jet-stream, cable, tether, aerodynamics, aircraft, airsail, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774