Search results for: block sparse signal
1495 Wireless Body Area Network’s Mitigation Method Using Equalization
Authors: Savita Sindhu, Shruti Vashist
Abstract:
A wireless body area sensor network (WBASN) is composed of a central node and heterogeneous sensors to supervise the physiological signals and functions of the human body. This overwhelmimg area has stimulated new research and calibration processes, especially in the area of WBASN’s attainment and fidelity. In the era of mobility or imbricated WBASN’s, system performance incomparably degrades because of unstable signal integrity. Hence, it is mandatory to define mitigation techniques in the design to avoid interference. There are various mitigation methods available e.g. diversity techniques, equalization, viterbi decoder etc. This paper presents equalization mitigation scheme in WBASNs to improve the signal integrity. Eye diagrams are also given to represent accuracy of the signal. Maximum no. of symbols is taken to authenticate the signal which in turn results in accuracy and increases the overall performance of the system.
Keywords: Wireless body area network, equalizer, RLS, LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8141494 Improved Root-Mean-Square-Gain-Combining for SIMO Channels
Authors: Rania Minkara, Jean-Pierre Dubois
Abstract:
The major problem that wireless communication systems undergo is multipath fading caused by scattering of the transmitted signal. However, we can treat multipath propagation as multiple channels between the transmitter and receiver to improve the signal-to-scattering-noise ratio. While using Single Input Multiple Output (SIMO) systems, the diversity receivers extract multiple signal branches or copies of the same signal received from different channels and apply gain combining schemes such as Root Mean Square Gain Combining (RMSGC). RMSGC asymptotically yields an identical performance to that of the theoretically optimal Maximum Ratio Combining (MRC) for values of mean Signal-to- Noise-Ratio (SNR) above a certain threshold value without the need for SNR estimation. This paper introduces an improvement of RMSGC using two different issues. We found that post-detection and de-noising the received signals improve the performance of RMSGC and lower the threshold SNR.Keywords: Bit error rate, de-noising, pre-detection, root-meansquare gain combining, single-input multiple-output channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13411493 Mounting Time Reduction using Content-Based Block Management for NAND Flash File System
Authors: Won-Hee Cho, GeunHyung Lee, Deok-Hwan Kim
Abstract:
The flash memory has many advantages such as low power consumption, strong shock resistance, fast I/O and non-volatility. And it is increasingly used in the mobile storage device. The YAFFS, one of the NAND flash file system, is widely used in the embedded device. However, the existing YAFFS takes long time to mount the file system because it scans whole spare areas in all pages of NAND flash memory. In order to solve this problem, we propose a new content-based flash file system using a mounting time reduction technique. The proposed method only scans partial spare areas of some special pages by using content-based block management. The experimental results show that the proposed method reduces the average mounting time by 87.2% comparing with JFFS2 and 69.9% comparing with YAFFS.
Keywords: NAND Flash Memory, Mounting Time, YAFFS, JFFS2, Content-based Block management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16801492 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment
Authors: Sudipta Majumdar, Amarendra Kumar Mishra
Abstract:
This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941491 A 24-Bit, 8.1-MS/s D/A Converter for Audio Baseband Channel Applications
Authors: N. Ben Ameur, M. Loulou
Abstract:
This paper study the high-level modelling and design of delta-sigma (ΔΣ) noise shapers for audio Digital-to-Analog Converter (DAC) so as to eliminate the in-band Signal-to-Noise- Ratio (SNR) degradation that accompany one channel mismatch in audio signal. The converter combines a cascaded digital signal interpolation, a noise-shaping single loop delta-sigma modulator with a 5-bit quantizer resolution in the final stage. To reduce sensitivity of Digital-to-Analog Converter (DAC) nonlinearities of the last stage, a high pass second order Data Weighted Averaging (R2DWA) is introduced. This paper presents a MATLAB description modelling approach of the proposed DAC architecture with low distortion and swing suppression integrator designs. The ΔΣ Modulator design can be configured as a 3rd-order and allows 24-bit PCM at sampling rate of 64 kHz for Digital Video Disc (DVD) audio application. The modeling approach provides 139.38 dB of dynamic range for a 32 kHz signal band at -1.6 dBFS input signal level.Keywords: DVD-audio, DAC, Interpolator and Interpolation Filter, Single-Loop ΔΣ Modulation, R2DWA, Clock Jitter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26261490 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961489 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling
Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi
Abstract:
EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19041488 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model
Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar
Abstract:
During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701487 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network
Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade
Abstract:
The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22911486 High Quality Speech Coding using Combined Parametric and Perceptual Modules
Authors: M. Kulesza, G. Szwoch, A. Czyżewski
Abstract:
A novel approach to speech coding using the hybrid architecture is presented. Advantages of parametric and perceptual coding methods are utilized together in order to create a speech coding algorithm assuring better signal quality than in traditional CELP parametric codec. Two approaches are discussed. One is based on selection of voiced signal components that are encoded using parametric algorithm, unvoiced components that are encoded perceptually and transients that remain unencoded. The second approach uses perceptual encoding of the residual signal in CELP codec. The algorithm applied for precise transient selection is described. Signal quality achieved using the proposed hybrid codec is compared to quality of some standard speech codecs.
Keywords: CELP residual coding, hybrid codec architecture, perceptual speech coding, speech codecs comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331485 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45971484 Non-Rigid Registration of Medical Images Using an Automated Method
Authors: Panos Kotsas
Abstract:
This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation. The geometric transformation model adopted is a local cubic B-splines based model.
Keywords: Medical image, non-rigid, registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521483 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811482 Electrocardiogram Signal Denoising Using a Hybrid Technique
Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim
Abstract:
This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.Keywords: Hybrid technique, ADTF, DWT, tresholding, ECG signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12021481 A Normalization-based Robust Image Watermarking Scheme Using SVD and DCT
Authors: Say Wei Foo, Qi Dong
Abstract:
Digital watermarking is one of the techniques for copyright protection. In this paper, a normalization-based robust image watermarking scheme which encompasses singular value decomposition (SVD) and discrete cosine transform (DCT) techniques is proposed. For the proposed scheme, the host image is first normalized to a standard form and divided into non-overlapping image blocks. SVD is applied to each block. By concatenating the first singular values (SV) of adjacent blocks of the normalized image, a SV block is obtained. DCT is then carried out on the SV blocks to produce SVD-DCT blocks. A watermark bit is embedded in the highfrequency band of a SVD-DCT block by imposing a particular relationship between two pseudo-randomly selected DCT coefficients. An adaptive frequency mask is used to adjust local watermark embedding strength. Watermark extraction involves mainly the inverse process. The watermark extracting method is blind and efficient. Experimental results show that the quality degradation of watermarked image caused by the embedded watermark is visually transparent. Results also show that the proposed scheme is robust against various image processing operations and geometric attacks.Keywords: Image watermarking, Image normalization, Singularvalue decomposition, Discrete cosine transform, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20971480 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10541479 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.
Keywords: Acoustic model, direction of arrival, inverse source problem, sound localization, urban noises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831478 Efficient Filtering of Graph Based Data Using Graph Partitioning
Authors: Nileshkumar Vaishnav, Aditya Tatu
Abstract:
An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.Keywords: Graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12391477 A New Technique for Multi Resolution Characterization of Epileptic Spikes in EEG
Authors: H. N. Suresh, Dr. V. Udaya Shankara
Abstract:
A technique proposed for the automatic detection of spikes in electroencephalograms (EEG). A multi-resolution approach and a non-linear energy operator are exploited. The signal on each EEG channel is decomposed into three sub bands using a non-decimated wavelet transform (WT). The WT is a powerful tool for multi-resolution analysis of non-stationary signal as well as for signal compression, recognition and restoration. Each sub band is analyzed by using a non-linear energy operator, in order to detect spikes. A decision rule detects the presence of spikes in the EEG, relying upon the energy of the three sub-bands. The effectiveness of the proposed technique was confirmed by analyzing both test signals and EEG layouts.Keywords: EEG, Spike, SNEO, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13791476 A Fragile Watermarking Scheme for Color Image Authentication
Authors: M. Hamad Hassan, S.A.M. Gilani
Abstract:
In this paper, a fragile watermarking scheme is proposed for color image specified object-s authentication. The color image is first transformed from RGB to YST color space, suitable for watermarking the color media. The T channel corresponds to the chrominance component of a color image andYS ÔèÑ T , therefore selected for embedding the watermark. The T channel is first divided into 2×2 non-overlapping blocks and the two LSBs are set to zero. The object that is to be authenticated is also divided into 2×2 nonoverlapping blocks and each block-s intensity mean is computed followed by eight bit encoding. The generated watermark is then embedded into T channel randomly selected 2×2 block-s LSBs using 2D-Torus Automorphism. Selection of block size is paramount for exact localization and recovery of work. The proposed scheme is blind, efficient and secure with ability to detect and locate even minor tampering applied to the image with full recovery of original work. The quality of watermarked media is quite high both subjectively and objectively. The technique is suitable for class of images with format such as gif, tif or bitmap.
Keywords: Image Authentication, LSBs, PSNR, 2D-Torus Automorphism, YST Color Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18891475 Generator Damage Recognition Based on Artificial Neural Network
Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen
Abstract:
This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..Keywords: Wind-driven generator, Fast Fourier Transform, Neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17611474 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis
Authors: Azeemsha Thacham Poyil, Nasimudeen KM
Abstract:
This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.
Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251473 Rigid and Non-rigid Registration of Binary Objects using the Weighted Ratio Image
Authors: Panos Kotsas, Tony Dodd
Abstract:
This paper presents the application of a signal intensity independent similarity criterion for rigid and non-rigid body registration of binary objects. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the raios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation.Keywords: rigid and non-rigid body registration, binary objects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13331472 Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India
Authors: Amit Bhattacharyya
Abstract:
The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.
Keywords: Disparity, inter-block, social development, spatial variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6451471 New Enhanced Hexagon-Based Search Using Point-Oriented Inner Search for Fast Block Motion Estimation
Authors: Lai-Man Po, Chi-Wang Ting, Ka-Ho Ng
Abstract:
Recently, an enhanced hexagon-based search (EHS) algorithm was proposed to speedup the original hexagon-based search (HS) by exploiting the group-distortion information of some evaluated points. In this paper, a second version of the EHS is proposed with a new point-oriented inner search technique which can further speedup the HS in both large and small motion environments. Experimental results show that the enhanced hexagon-based search version-2 (EHS2) is faster than the HS up to 34% with negligible PSNR degradation.Keywords: Inner search, fast motion estimation, block-matching, hexagon search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14331470 Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB
Authors: Durgesh Kumar Ojha, Monica Subashini
Abstract:
The proposed method is to study and analyze Electrocardiograph (ECG) waveform to detect abnormalities present with reference to P, Q, R and S peaks. The first phase includes the acquisition of real time ECG data. In the next phase, generation of signals followed by pre-processing. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool, MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work with ECG signals for processing and analysis in real time applications. The simulation would help in improving the accuracy and the hardware could be built conveniently.
Keywords: ECG Waveform, Peak Detection, Arrhythmia, Matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120091469 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier
Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic
Abstract:
In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.
Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781468 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique
Authors: R. Sarathi, G. Koperundevi
Abstract:
Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38421467 Enhanced Gram-Schmidt Process for Improving the Stability in Signal and Image Processing
Authors: Mario Mastriani, Marcelo Naiouf
Abstract:
The Gram-Schmidt Process (GSP) is used to convert a non-orthogonal basis (a set of linearly independent vectors) into an orthonormal basis (a set of orthogonal, unit-length vectors). The process consists of taking each vector and then subtracting the elements in common with the previous vectors. This paper introduces an Enhanced version of the Gram-Schmidt Process (EGSP) with inverse, which is useful for signal and image processing applications.
Keywords: Digital filters, digital signal and image processing, Gram-Schmidt Process, orthonormalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28861466 Small Signal Stability Assessment of MEPE Test System in Free and Open Source Software
Authors: Kyaw Myo Lin
Abstract:
This paper presents small signal stability study carried over the 140-Bus, 31-Machine, 5-Area MEPE system and validated on free and open source software: PSAT. Well-established linearalgebra analysis, eigenvalue analysis, is employed to determine the small signal dynamic behavior of test system. The aspects of local and interarea oscillations which may affect the operation and behavior of power system are analyzed. Eigenvalue analysis is carried out to investigate the small signal behavior of test system and the participation factors have been determined to identify the participation of the states in the variation of different mode shapes. Also, the variations in oscillatory modes are presented to observe the damping performance of the test system.
Keywords: Eigenvalue analysis, Mode shapes, MEPE test system, Participation factors, Power System oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436