Search results for: Technology Based Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13704

Search results for: Technology Based Learning

13464 Ontology Development of e-Learning Moodle for Social Learning Network Analysis

Authors: Norazah Yusof, Andi Besse Firdausiah Mansur

Abstract:

Social learning network analysis has drawn attention for most researcher on e-learning research domain. This is due to the fact that it has the capability to identify the behavior of student during their social interaction inside e-learning. Normally, the social network analysis (SNA) is treating the students' interaction merely as node and edge with less meaning. This paper focuses on providing an ontology structure of e-learning Moodle that can enrich the relationships among students, as well as between the students and the teacher. This ontology structure brings great benefit to the future development of e-learning system.

Keywords: Ontology, e-learning, © Learning Network, Moodle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
13463 A Meta-Analytic Path Analysis of e-Learning Acceptance Model

Authors: David W.S. Tai, Ren-Cheng Zhang, Sheng-Hung Chang, Chin-Pin Chen, Jia-Ling Chen

Abstract:

This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.

Keywords: E-learning, Meta Analytic Path Analysis, Technology Acceptance Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
13462 The Use of S Curves in Technology Forecasting and its Application On 3D TV Technology

Authors: Gizem Intepe, Tufan Koc

Abstract:

S-Curves are commonly used in technology forecasting. They show the paths of product performance in relation to time or investment in R&D. It is a useful tool to describe the inflection points and the limit of improvement of a technology. Companies use this information to base their innovation strategies. However inadequate use and some limitations of this technique lead to problems in decision making. In this paper first technology forecasting and its importance for company level strategies will be discussed. Secondly the S-Curve and its place among other forecasting techniques will be introduced. Thirdly its use in technology forecasting will be discussed based on its advantages, disadvantages and limitations. Finally an application of S-curve on 3D TV technology using patent data will also be presented and the results will be discussed.

Keywords: Patent analysis, Technological forecasting. S curves, 3D TV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7784
13461 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: Community-based innovation, integrated knowledge networks, nanotechnology, technology innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
13460 Morphological and Syntactic Meaning: An Interactive Crossword Puzzle Approach

Authors: Ibrahim Garba

Abstract:

This research involved the use of word distributions and morphological knowledge by speakers of Arabic learning English connected different allomorphs in order to realize how the morphology and syntax of English gives meaning through using interactive crossword puzzles (ICP). Fifteen chapters covered with a class of nine learners over an academic year of an intensive English program were reviewed using the ICP. Learners were questioned about how the use of this gaming element enhanced and motivated their learning of English. The findings were positive indicating a successful implementation of ICP both at creational and user levels. This indicated a positive role technology had when learning and teaching English through adopting an interactive gaming element for learning English.

Keywords: Distribution, gaming, interactive-crossword-puzzle, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
13459 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 402
13458 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
13457 Robot Technology Impact on Dyslexic Students’ English Learning

Authors: Khaled Hamdan, Abid Amorri, Fatima Hamdan

Abstract:

Involving students in English language learning process and achieving an adequate English language proficiency in the target language can be a great challenge for both teachers and students. This can prove even a far greater challenge to engage students with special needs (Dyslexia) if they have physical impairment and inadequate mastery of basic communicative language competence/proficiency in the target language. From this perspective, technology like robots can probably be used to enhance learning process for the special needs students who have extensive communication needs, who face continuous struggle to interact with their peers and teachers and meet academic requirements. Robots, precisely NAO, can probably provide them with the perfect opportunity to practice social and communication skills, and meet their English academic requirements. This research paper aims to identify to what extent robots can be used to improve students’ social interaction and communication skills and to understand the potential for robotics-based education in motivating and engaging UAEU dyslexic students to meet university requirements. To reach this end, the paper will explore several factors that come into play – Motion Level-involving cognitive activities, Interaction Level-involving language processing, Behavior Level -establishing a close relationship with the robot and Appraisal Level- focusing on dyslexia students’ achievement in the target language.

Keywords: Dyslexia, robot technology, motion, interaction, behavior and appraisal levels, social and communication skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
13456 Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm

Authors: O. P. Rishi, Rekha Govil, Madhavi Sinha

Abstract:

Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.

Keywords: CBR, ITS, student modeling, distributed system, intelligent agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
13455 Attacks Classification in Adaptive Intrusion Detection using Decision Tree

Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.

Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
13454 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
13453 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees’ skill efficiently. This study is focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increasing. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, Job Satisfaction, Learning and growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
13452 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
13451 E-learning and m-learning: Africa-s Search for a Suitable Concept in the Era of Cloud Computing?

Authors: J. Seke Mboungou Mouyabi

Abstract:

This paper is an exploration of the conceptual confusion between E-learning and M-learning particularly in Africa. Section I provides a background to the development of E-learning and M-learning. Section II focuses on the conceptual analysis as it applies to Africa. It is with an investigative and expansive mind that this paper is elaborated to respond to a profound question of the suitability of the concepts in a particular era in Africa. The aim of this paper is therefore to shed light on which concept best suits the unique situation of Africa in the era of cloud computing.

Keywords: African Concept, Cloud computing, E-learning, Mlearning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
13450 Development of a Technology Assessment Model by Patents and Customers' Review Data

Authors: Kisik Song, Sungjoo Lee

Abstract:

Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.

Keywords: Technology assessment, patents, citation information, opinion mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
13449 Using Interval Trees for Approximate Indexing of Instances

Authors: Khalil el Hindi

Abstract:

This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.

Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
13448 Impact of VARK Learning Model at Tertiary Level Education

Authors: Munazza A. Mirza, Khawar Khurshid

Abstract:

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

Keywords: Learning style, VARK, sensory preferences, identification model, didactic practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5419
13447 A Learner-Centred or Artefact-Centred Classroom? Impact of Technology, Artefacts, and Environment on Task Processes in an English as a Foreign Language Classroom

Authors: Nobue T. Ellis

Abstract:

This preliminary study attempts to see if a learning environment influences instructor’s teaching strategies and learners’ in-class activities in a foreign language class at a university in Japan. The class under study was conducted in a computer room, while the majority of classes of the same course were offered in traditional classrooms without computers. The study also sees if the unplanned blended learning environment, enhanced, or worked against, in achieving course goals, by paying close attention to in-class artefacts, such as computers. In the macro-level analysis, the course syllabus and weekly itinerary of the course were looked at; and in the microlevel analysis, nonhuman actors in their environments were named and analyzed to see how they influenced the learners’ task processes. The result indicated that students were heavily influenced by the presence of computers, which lead them to disregard some aspects of intended learning objectives.

Keywords: Computer-assisted language learning, actor-network theory, English as a foreign language, task-based teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
13446 A Strategic Evaluation Approach for Defining the Maturity of Manufacturing Technologies

Authors: G. Reinhart, S. Schindler

Abstract:

Due to dynamic evolution, the ability of a manufacturing technology to produce a special product is changing. Therefore, it is essential to monitor the established techniques and processes to detect whether a company-s production will fit future circumstances. Concerning the manufacturing technology planning process, companies must decide when to change to a new technology for maintaining and increasing competitive advantages. In this context, the maturity assessment of the focused technologies is crucial. This article presents an approach for defining the maturity of a manufacturing technology from a strategic point of view. The concept is based on the approach of technology readiness level (TRL) according to NASA (National Aeronautics and Space Administration), but also includes dynamic changes. Therefore, the model takes into account the concept of the technology life cycle. Furthermore, it enables a company to estimate the ideal date for implementation of a new manufacturing technology.

Keywords: Maturity Assessment, Manufacturing Technology Planning, Technology Life Cycle, Technology Readiness Level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
13445 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy

Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler

Abstract:

An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.

Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
13444 Learning Programming for Hearing Impaired Students via an Avatar

Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause

Abstract:

Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.

Keywords: Hearing-impaired students, isolation, self-esteem, learning difficulties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
13443 Building a Personalized Multidimensional Intelligent Learning System

Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen

Abstract:

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
13442 Students’ Level of Participation, Critical Thinking, Types of Action and Influencing Factors in Online Forum Environment

Authors: N. I. Bazid, I. N. Umar

Abstract:

Due to the advancement of Internet technology, online learning is widely used in higher education institutions. Online learning offers several means of communication, including online forum. Through online forum, students and instructors are able to discuss and share their knowledge and expertise without having a need to attend the face-to-face, ordinary classroom session. The purposes of this study are to analyze the students’ levels of participation and critical thinking, types of action and factors influencing their participation in online forum. A total of 41 postgraduate students undertaking a course in educational technology from a public university in Malaysia were involved in this study. In this course, the students participated in a weekly online forum as part of the course requirement. Based on the log data file extracted from the online forum, the students’ type of actions (view, add, update, delete posts) and their levels of participation (passive, moderate or active) were identified. In addition, the messages posted in the forum were analyzed to gauge their level of critical thinking. Meanwhile, the factors that might influence their online forum participation were measured using a 24-items questionnaire. Based on the log data, a total of 105 posts were sent by the participants. In addition, the findings show that (i) majority of the students are moderate participants, with an average of two to three posts per person, (ii) viewing posts are the most frequent type of action (85.1%), and followed by adding post (9.7%). Furthermore, based on the posts they made, the most frequent type of critical thinking observed was justification (50 input or 19.0%), followed by linking ideas and interpretation (47 input or 18%), and novelty (38 input or 14.4%). The findings indicate that online forum allows for social interaction and can be used to measure the students’ critical thinking skills. In order to achieve this, monitoring students’ activities in the online forum is recommended.

Keywords: Critical thinking, learning management system, level of online participation, online forum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
13441 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
13440 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
13439 Technology Diffusion and Inclusive Development in Africa: A System Dynamics Perspective

Authors: M. Kaggwa

Abstract:

Technology or lack of it will play an important role in Africa-s effort to achieve inclusive development. Although a key determinant of competitiveness, new technology can exacerbate exclusion of the majority from the mainstream economic activities. To minimise potential technology exclusion while leveraging its critical role in African-s development, requires insight into technology diffusion process. Using system dynamics approach, a technology diffusion model is presented. The frequency of interaction of people exposed to and those not exposed to technology, and the technology adoption rate - the fraction of people who embrace new technologies once they are exposed, are identified as the broad factors critical to technology diffusion to wider society enabling more people to be part of the economic growth process. Based on simulation results, it is recommends that these two broad factors should form part of national policy aimed at achieving inclusive and sustainable development in Africa.

Keywords: Inclusive Development, System Dynamics, Technology, Technology diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
13438 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
13437 Dialogue Meetings as an Arena for Collaboration and Reflection among Researchers and Practitioners

Authors: Kerstin Grunden, Ann Svensson, Berit Forsman, Christina Karlsson, Ayman Obeid

Abstract:

The research question of the article is to explore whether the dialogue meetings method could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in municipalities, or not. A testbed was planned to be implemented in a retirement home in a Swedish municipality, and the practitioners worked with a pre-study of that testbed. In the article, the dialogue between the researchers and the practitioners in the dialogue meetings is described and analyzed. The potential of dialogue meetings as an arena for learning and reflection among researchers and practitioners is discussed. The research methodology approach is participatory action research with mixed methods (dialogue meetings, focus groups, participant observations). The main findings from the dialogue meetings were that the researchers learned more about the use of traditional research methods, and the practitioners learned more about how they could improve their use of the methods to facilitate change processes in their organization. These findings have the potential both for the researchers and the practitioners to result in more relevant use of research methods in change processes in organizations. It is concluded that dialogue meetings could be relevant for reflective learning among researchers and practitioners when welfare technology should be implemented in a health care organization.

Keywords: Dialogue meetings, implementation, reflection, test bed, welfare technology, participatory action research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 464
13436 Personalized Email Marketing Strategy: A Reinforcement Learning Approach

Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan, Roger Brooks

Abstract:

Email marketing is one of the most important segments of online marketing. Email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of emails has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.

Keywords: Email marketing, email content, reinforcement learning, machine learning, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
13435 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond

Authors: Zeineb Deymi-Gheriani

Abstract:

In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).

Keywords: Active learning, constructivism, experiential learning, Piaget, Vygotsky.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469