Search results for: Human tracking system
9698 Development of a Non-invasive System to Measure the Thickness of the Subcutaneous Adipose Tissue Layer for Human
Authors: Hyuck Ki Hong, Young Chang Jo, Yeon Shik Choi, Beom Joon Kim, Hyo Derk Park
Abstract:
To measure the thickness of the subcutaneous adipose tissue layer, a non-invasive optical measurement system (λ=1300 nm) is introduced. Animal and human subjects are used for the experiments. The results of human subjects are compared with the data of ultrasound device measurements, and a high correlation (r=0.94 for n=11) is observed. There are two modes in the corresponding signals measured by the optical system, which can be explained by two-layered and three-layered tissue models. If the target tissue is thinner than the critical thickness, detected data using diffuse reflectance method follow the three-layered tissue model, so the data increase as the thickness increases. On the other hand, if the target tissue is thicker than the critical thickness, the data follow the two-layered tissue model, so they decrease as the thickness increases.Keywords: Subcutaneous adipose tissue layer, non-invasive measurement system, two-layered and three-layered tissue models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18469697 Intelligent Modeling of the Electrical Activity of the Human Heart
Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos
Abstract:
The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18279696 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13399695 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.
Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16799694 Model Predictive Control of Three Phase Inverter for PV Systems
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37669693 Motion Planning of SCARA Robots for Trajectory Tracking
Authors: Giovanni Incerti
Abstract:
The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.Keywords: Motion planning, SCARA robot, trajectory tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24059692 IntelliCane: A Cane System for Individuals with Lower-Limb Mobility and Functional Impairments
Authors: Adrian Bostan, Nicolae Tapus, Adriana Tapus
Abstract:
The purpose of this research paper is to study and develop a system that is able to help identify problems and improve human rehabilitation after traumatic injuries. Traumatic injuries in human’s lower limbs can occur over a life time and can have serious side effects if they are not treated correctly. In this paper, we developed an intelligent cane (IntelliCane) so as to help individuals in their rehabilitation process and provide feedback to the users. The first stage of the paper involves an analysis of the existing systems on the market and what can be improved. The second stage presents the design of the system. The third part, which is still under development is the validation of the system in real world setups with people in need. This paper presents mainly stages one and two.Keywords: IntelliCane, 3D printing, microprocessor, weight measurement, rehabilitation tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9349691 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control
Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni
Abstract:
An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.
Keywords: Automation, human factors, air traffic controller, MINIMA, OOTL, Out-Of-The-Loop, EEG, electroencephalography, HMI, human machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14529690 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets
Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi
Abstract:
In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25649689 On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation
Authors: M. A. Masnadi-Shirazi, S. A. Banani
Abstract:
In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.
Keywords: Glint noise, IMM, Kalman Filter, Kinematics, Target Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16429688 Analysis of Web User Identification Methods
Authors: Renáta Iváncsy, Sándor Juhász
Abstract:
Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. One of the key issues in the preprocessing phase is to identify web users. Identifying users based on web log files is not a straightforward problem, thus various methods have been developed. There are several difficulties that have to be overcome, such as client side caching, changing and shared IP addresses and so on. This paper presents three different methods for identifying web users. Two of them are the most commonly used methods in web log mining systems, whereas the third on is our novel approach that uses a complex cookie-based method to identify web users. Furthermore we also take steps towards identifying the individuals behind the impersonal web users. To demonstrate the efficiency of the new method we developed an implementation called Web Activity Tracking (WAT) system that aims at a more precise distinction of web users based on log data. We present some statistical analysis created by the WAT on real data about the behavior of the Hungarian web users and a comprehensive analysis and comparison of the three methodsKeywords: Data preparation, Tracking individuals, Web useridentification, Web usage mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43929687 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11539686 Open Source Implementation of M-Learning for Primary School in Malaysia
Authors: Saipunidzam Mahamad, Mohammad Noor Ibrahim, Mohamad Izzriq Ab Malek Foad, ShakirahMohd Taib
Abstract:
With the proliferation of the mobile device technologies, mobile learning can be used to complement and improve traditional learning problems. Both students and teachers need a proper and handy system to monitor and keep track the performance of the students. This paper presents an implementation of M-learning for primary school in Malaysia by using an open source technology. It focuses on learning mathematics using handheld devices for primary schools- students aged 11 and 12 years old. Main users for this system include students, teachers and the administrator. This application suggests a new mobile learning environment with mobile graph for tracking the students- progress and performance. The purpose of this system is not to replace traditional classroom but to complement the learning process. In a testing conducted, students who used this system performed better in their examination.Keywords: M-Learning, Automated Mobile Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24559685 A Medical Vulnerability Scoring System Incorporating Health and Data Sensitivity Metrics
Authors: Nadir A. Carreón, Christa Sonderer, Aakarsh Rao, Roman Lysecky
Abstract:
With the advent of complex software and increased connectivity, security of life-critical medical devices is becoming an increasing concern, particularly with their direct impact to human safety. Security is essential, but it is impossible to develop completely secure and impenetrable systems at design time. Therefore, it is important to assess the potential impact on security and safety of exploiting a vulnerability in such critical medical systems. The common vulnerability scoring system (CVSS) calculates the severity of exploitable vulnerabilities. However, for medical devices, it does not consider the unique challenges of impacts to human health and privacy. Thus, the scoring of a medical device on which a human life depends (e.g., pacemakers, insulin pumps) can score very low, while a system on which a human life does not depend (e.g., hospital archiving systems) might score very high. In this paper, we present a Medical Vulnerability Scoring System (MVSS) that extends CVSS to address the health and privacy concerns of medical devices. We propose incorporating two new parameters, namely health impact and sensitivity impact. Sensitivity refers to the type of information that can be stolen from the device, and health represents the impact to the safety of the patient if the vulnerability is exploited (e.g., potential harm, life threatening). We evaluate 15 different known vulnerabilities in medical devices and compare MVSS against two state-of-the-art medical device-oriented vulnerability scoring system and the foundational CVSS.
Keywords: Common vulnerability system, medical devices, medical device security, vulnerabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7459684 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13289683 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.
Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759682 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach
Authors: Alexander S. Andreev, Olga A. Peregudova
Abstract:
In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.
Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20589681 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator
Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang
Abstract:
This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22089680 3D Dynamic Representation System for the Human Head
Authors: Laurenţiu Militeanu, Cristina Gena Dascâlu, D. Cristea
Abstract:
The human head representations usually are based on the morphological – structural components of a real model. Over the time became more and more necessary to achieve full virtual models that comply very rigorous with the specifications of the human anatomy. Still, making and using a model perfectly fitted with the real anatomy is a difficult task, because it requires large hardware resources and significant times for processing. That is why it is necessary to choose the best compromise solution, which keeps the right balance between the details perfection and the resources consumption, in order to obtain facial animations with real-time rendering. We will present here the way in which we achieved such a 3D system that we intend to use as a base point in order to create facial animations with real-time rendering, used in medicine to find and to identify different types of pathologies.Keywords: 3D models, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14569679 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System
Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh
Abstract:
A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.
Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21579678 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13099677 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15299676 Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video
Authors: V. Girondel, L. Bonnaud, A. Caplier, M. Rombaut
Abstract:
This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.
Keywords: Belief theory, classifiers comparison, data fusion, human motion analysis, real-time processing, static posture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15169675 Mouse Pointer Tracking with Eyes
Authors: H. Mhamdi, N. Hamrouni, A. Temimi, M. Bouhlel
Abstract:
In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.Keywords: Computer vision, Face and Eyes Detection, Mouse pointer recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21299674 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7919673 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Authors: Mounira RouaÐùnia, Noureddine Doghmane
Abstract:
In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16349672 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance
Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang
Abstract:
In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.
Keywords: Optimal linear quadratic tracker, proportional plus integral observer, state estimator, disturbance estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12939671 Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion
Authors: M. Yoneda
Abstract:
It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field.Keywords: Dynamic interaction, footbridge, stationary people, structural damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11169670 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.
Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4499669 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor
Authors: Abdelsalam A. Ahmed
Abstract:
Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is derived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.Keywords: Permanent magnet synchronous motor, mode predictive control, optimization of DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102