Search results for: Discrete Hidden Markov Model.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7942

Search results for: Discrete Hidden Markov Model.

7702 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
7701 Weak Measurement Theory for Discrete Scales

Authors: Jan Newmarch

Abstract:

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Keywords: Data representation, internationalisation, localisation, measurement theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
7700 Stability of Discrete Linear Systems with Periodic Coefficients under Parametric Perturbations

Authors: Adam Czornik, Aleksander Nawrat

Abstract:

This paper studies the problem of exponential stability of perturbed discrete linear systems with periodic coefficients. Assuming that the unperturbed system is exponentially stable we obtain conditions on the perturbations under which the perturbed system is exponentially stable.

Keywords: Exponential stability, time-varying linear systems, periodic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
7699 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
7698 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: Discrete Wavelet Transform, speech intelligibility, STOI, standard deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
7697 Design Techniques and Implementation of Low Power High-Throughput Discrete Wavelet Transform Tilters for JPEG 2000 Standard

Authors: Grigorios D. Dimitroulakos, N. D. Zervas, N. Sklavos, Costas E. Goutis

Abstract:

In this paper, the implementation of low power, high throughput convolutional filters for the one dimensional Discrete Wavelet Transform and its inverse are presented. The analysis filters have already been used for the implementation of a high performance DWT encoder [15] with minimum memory requirements for the JPEG 2000 standard. This paper presents the design techniques and the implementation of the convolutional filters included in the JPEG2000 standard for the forward and inverse DWT for achieving low-power operation, high performance and reduced memory accesses. Moreover, they have the ability of performing progressive computations so as to minimize the buffering between the decomposition and reconstruction phases. The experimental results illustrate the filters- low power high throughput characteristics as well as their memory efficient operation.

Keywords: Discrete Wavelet Transform; JPEG2000 standard; VLSI design; Low Power-Throughput-optimized filters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
7696 Implementation of an Associative Memory Using a Restricted Hopfield Network

Authors: Tet H. Yeap

Abstract:

An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.

Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
7695 An Additive Watermarking Technique in Gray Scale Images Using Discrete Wavelet Transformation and Its Analysis on Watermark Strength

Authors: Kamaldeep Joshi, Rajkumar Yadav, Ashok Kumar Yadav

Abstract:

Digital Watermarking is a procedure to prevent the unauthorized access and modification of personal data. It assures that the communication between two parties remains secure and their communication should be undetected. This paper investigates the consequence of the watermark strength of the grayscale image using a Discrete Wavelet Transformation (DWT) additive technique. In this method, the gray scale host image is divided into four sub bands: LL (Low-Low), HL (High-Low), LH (Low-High), HH (High-High) and the watermark is inserted in an LL sub band using DWT technique. As the image is divided into four sub bands, a watermark of equal size of the LL sub band has been inserted and the results are discussed. LL represents the average component of the host image which contains the maximum information of the image. Two kinds of experiments are performed. In the first, the same watermark is embedded in different images and in the later on the strength of the watermark varies by a factor of s i.e. (s=10, 20, 30, 40, 50) and it is inserted in the same image.

Keywords: Watermarking, discrete wavelet transform, scaling factor, steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
7694 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

Authors: Shuhe Shao

Abstract:

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Keywords: BP neural network, sports aerobics, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
7693 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error

Authors: R. Sabre, W. Horrigue, J. C. Simon

Abstract:

This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.

Keywords: Spectral density, stable processes, aliasing, periodogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
7692 Effectiveness of Contourlet vs Wavelet Transform on Medical Image Compression: a Comparative Study

Authors: Negar Riazifar, Mehran Yazdi

Abstract:

Discrete Wavelet Transform (DWT) has demonstrated far superior to previous Discrete Cosine Transform (DCT) and standard JPEG in natural as well as medical image compression. Due to its localization properties both in special and transform domain, the quantization error introduced in DWT does not propagate globally as in DCT. Moreover, DWT is a global approach that avoids block artifacts as in the JPEG. However, recent reports on natural image compression have shown the superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks, compared to DWT. It is mostly due to the optimality of contourlet in representing the edges when they are smooth curves. In this work, we investigate this fact for medical images, especially for CT images, which has not been reported yet. To do that, we propose a compression scheme in transform domain and compare the performance of both DWT and contourlet transform in PSNR for different compression ratios (CR) using this scheme. The results obtained using different type of computed tomography images show that the DWT has still good performance at lower CR but contourlet transform performs better at higher CR.

Keywords: Computed Tomography (CT), DWT, Discrete Contourlet Transform, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
7691 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction

Authors: Ε. Giovanis

Abstract:

In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.

Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
7690 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
7689 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: Markov process, milling system, availability modeling, rice milling plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
7688 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: Railway ballast, coal fouling, discrete element modelling, discrete element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
7687 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
7686 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
7685 Discrete Wavelet Transform Decomposition Level Determination Exploiting Sparseness Measurement

Authors: Lei Lei, Chao Wang, Xin Liu

Abstract:

Discrete wavelet transform (DWT) has been widely adopted in biomedical signal processing for denoising, compression and so on. Choosing a suitable decomposition level (DL) in DWT is of paramount importance to its performance. In this paper, we propose to exploit sparseness of the transformed signals to determine the appropriate DL. Simulation results have shown that the sparseness of transformed signals after DWT increases with the increasing DLs. Additional Monte-Carlo simulation results have verified the effectiveness of sparseness measure in determining the DL.

Keywords: Sparseness, DWT, decomposition level, ECG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5873
7684 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks

Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati

Abstract:

In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.

Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
7683 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Authors: S. M. Ali, N. R. Dhar

Abstract:

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Keywords: ANN, MQL, Surface Roughness, Tool Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868
7682 An H1-Galerkin Mixed Method for the Coupled Burgers Equation

Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang

Abstract:

In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.

Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
7681 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
7680 A new Heuristic Algorithm for the Dynamic Facility Layout Problem with Budget Constraint

Authors: Parham Azimi, Hamid Reza Charmchi

Abstract:

In this research, we have developed a new efficient heuristic algorithm for the dynamic facility layout problem with budget constraint (DFLPB). This heuristic algorithm combines two mathematical programming methods such as discrete event simulation and linear integer programming (IP) to obtain a near optimum solution. In the proposed algorithm, the non-linear model of the DFLP has been changed to a pure integer programming (PIP) model. Then, the optimal solution of the PIP model has been used in a simulation model that has been designed in a similar manner as the DFLP for determining the probability of assigning a facility to a location. After a sufficient number of runs, the simulation model obtains near optimum solutions. Finally, to verify the performance of the algorithm, several test problems have been solved. The results show that the proposed algorithm is more efficient in terms of speed and accuracy than other heuristic algorithms presented in previous works found in the literature.

Keywords: Budget constraint, Dynamic facility layout problem, Integer programming, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
7679 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: Discrete Element Method, fluid flow, parametric study, sand production/bonds failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
7678 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell

Authors: M. Hossain, H. P. Zhu, A. B. Yu

Abstract:

This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.

Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
7677 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: Heat/Mass Transfer, Biodiesel, Multi-component Fuel, Droplet, Evaporation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
7676 High Securing Cover-File of Hidden Data Using Statistical Technique and AES Encryption Algorithm

Authors: A. A. Zaidan, Anas Majeed, B. B. Zaidan

Abstract:

Nowadays, the rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threatens. It-s a big security and privacy issue with the large flood of information and the development of the digital format, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information. Nowadays protection system classified with more specific as hiding information, encryption information, and combination between hiding and encryption to increase information security, the strength of the information hiding science is due to the non-existence of standard algorithms to be used in hiding secret messages. Also there is randomness in hiding methods such as combining several media (covers) with different methods to pass a secret message. In addition, there are no formal methods to be followed to discover the hidden data. For this reason, the task of this research becomes difficult. In this paper, a new system of information hiding is presented. The proposed system aim to hidden information (data file) in any execution file (EXE) and to detect the hidden file and we will see implementation of steganography system which embeds information in an execution file. (EXE) files have been investigated. The system tries to find a solution to the size of the cover file and making it undetectable by anti-virus software. The system includes two main functions; first is the hiding of the information in a Portable Executable File (EXE), through the execution of four process (specify the cover file, specify the information file, encryption of the information, and hiding the information) and the second function is the extraction of the hiding information through three process (specify the steno file, extract the information, and decryption of the information). The system has achieved the main goals, such as make the relation of the size of the cover file and the size of information independent and the result file does not make any conflict with anti-virus software.

Keywords: Cryptography, Steganography, Portable ExecutableFile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
7675 Evolution of Fuzzy Neural Networks Using an Evolution Strategy with Fuzzy Genotype Values

Authors: Hidehiko Okada

Abstract:

Evolution strategy (ES) is a well-known instance of evolutionary algorithms, and there have been many studies on ES. In this paper, the author proposes an extended ES for solving fuzzy-valued optimization problems. In the proposed ES, genotype values are not real numbers but fuzzy numbers. Evolutionary processes in the ES are extended so that it can handle genotype instances with fuzzy numbers. In this study, the proposed method is experimentally applied to the evolution of neural networks with fuzzy weights and biases. Results reveal that fuzzy neural networks evolved using the proposed ES with fuzzy genotype values can model hidden target fuzzy functions even though no training data are explicitly provided. Next, the proposed method is evaluated in terms of variations in specifying fuzzy numbers as genotype values. One of the mostly adopted fuzzy numbers is a symmetric triangular one that can be specified by its lower and upper bounds (LU) or its center and width (CW). Experimental results revealed that the LU model contributed better to the fuzzy ES than the CW model, which indicates that the LU model should be adopted in future applications of the proposed method.

Keywords: Evolutionary algorithm, evolution strategy, fuzzy number, feedforward neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
7674 A Watermarking Signature Scheme with Hidden Watermarks and Constraint Functions in the Symmetric Key Setting

Authors: Yanmin Zhao, Siu Ming Yiu

Abstract:

To claim the ownership for an executable program is a non-trivial task. An emerging direction is to add a watermark to the program such that the watermarked program preserves the original program’s functionality and removing the watermark would heavily destroy the functionality of the watermarked program. In this paper, the first watermarking signature scheme with the watermark and the constraint function hidden in the symmetric key setting is constructed. The scheme uses well-known techniques of lattice trapdoors and a lattice evaluation. The watermarking signature scheme is unforgeable under the Short Integer Solution (SIS) assumption and satisfies other security requirements such as the unremovability security property.

Keywords: Short integer solution problem, signatures, the symmetric-key setting, watermarking schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
7673 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854