Search results for: Bayesian approach Kalman filtering approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5407

Search results for: Bayesian approach Kalman filtering approach

2797 Traditions of Theatrical Art in the Space of Nomadic Culture of the Kazakhs

Authors: Yeskendirov N.R., Karjaubaeva S.K., Ahmet A. K.

Abstract:

A number of theoretical and methodological problems connected with substantiation of a new approach and searches of a new research paradigm and the analysis of features of formation and development of the Kazakh stage are considered in the article. The wide spectrum of questions connected with genesis of the Kazakh stage art has caused necessity of consideration of world outlook and social cultural aspects which have affected formation of the given phenomenon in the Kazakh culture. But how can we define the form of expression and aesthetics of the national theatre? Probably, the answer to this question we will find if we apply to deep world view sources, and, as a consequence, it is necessary to study deeply the plot dramaturgy, which is based on myths, rites and eposes, mastering of symbolic gestures and mimics, allegory of a word, etc.

Keywords: Tradition, theater, art, culture, nomadic Kazakhs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
2796 Performance Analysis of Adaptive LMS Filter through Regression Analysis using SystemC

Authors: Hyeong-Geon Lee, Jae-Young Park, Suk-ki Lee, Jong-Tae Kim

Abstract:

The LMS adaptive filter has several parameters which can affect their performance. From among these parameters, most papers handle the step size parameter for controlling the performance. In this paper, we approach three parameters: step-size, filter tap-size and filter form. The regression analysis is used for defining the relation between parameters and performance of LMS adaptive filter with using the system level simulation results. The results present that all parameters have performance trends in each own particular form, which can be estimated from equations drawn by regression analysis.

Keywords: System level model, adaptive LMS FIR filter, regression analysis, systemC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
2795 A Security Analysis for Home Gateway Architectures

Authors: Pierre Parrend, Stephane Frenot

Abstract:

Providing Services at Home has become over the last few years a very dynamic and promising technological domain. It is likely to enable wide dissemination of secure and automated living environments. We propose a methodology for identifying threats to Services at Home Delivery systems, as well as a threat analysis of a multi-provider Home Gateway architecture. This methodology is based on a dichotomous positive/preventive study of the target system: it aims at identifying both what the system must do, and what it must not do. This approach completes existing methods with a synthetic view of potential security flaws, thus enabling suitable measures to be taken into account. Security implications of the evolution of a given system become easier to deal with. A prototype is built based on the conclusions of this analysis.

Keywords: Security requirements, Connected Home, OSGi, Sofware Components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
2794 Stochastic Programming Model for Power Generation

Authors: Takayuki Shiina

Abstract:

We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.

Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
2793 Data-driven ASIC for Multichannel Sensors

Authors: Eduard Atkin, Alexander Klyuev, Vitaly Shumikhin

Abstract:

An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.

Keywords: Data-driven architecture, derandomizer, multichannel sensor readout

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
2792 Human Interactive E-learning Systems using Head Posture Images

Authors: Yucel Ugurlu

Abstract:

This paper explains a novel approach to human interactive e-learning systems using head posture images. Students- face and hair information are used to identify a human presence and estimate the gaze direction. We then define the human-computer interaction level and test the definition using ten students and seventy different posture images. The experimental results show that head posture images provide adequate information for increasing human-computer interaction in e-learning systems.

Keywords: E-learning, image segmentation, human-presence, gaze-direction, human-computer interaction, LabVIEW

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
2791 Applying Wavelet Entropy Principle in Fault Classification

Authors: S. El Safty, A. El-Zonkoly

Abstract:

The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.

Keywords: Fault classification, wavelet transform, waveletentropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
2790 Forecasting Malaria Cases in Bujumbura

Authors: Hermenegilde Nkurunziza, Albrecht Gebhardt, Juergen Pilz

Abstract:

The focus in this work is to assess which method allows a better forecasting of malaria cases in Bujumbura ( Burundi) when taking into account association between climatic factors and the disease. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in Bujumbura are described and analyzed. We propose a hierarchical approach to achieve our objective. We first fit a Generalized Additive Model to malaria cases to obtain an accurate predictor, which is then used to predict future observations. Various well-known forecasting methods are compared leading to different results. Based on in-sample mean average percentage error (MAPE), the multiplicative exponential smoothing state space model with multiplicative error and seasonality performed better.

Keywords: Burundi, Forecasting, Malaria, Regressionmodel, State space model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
2789 Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach

Authors: Farnaz G. Nezami, Mir B. Aryanezhad, Seyed J. Sadjadi

Abstract:

In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.

Keywords: Geometric programming, marketing, nonlinear optimization, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
2788 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
2787 Development of a Quantitative Material Wastage Management Plan for Effective Waste Reduction in the Building Construction Industry

Authors: Kwok Tak Kit

Abstract:

Combating climate change is becoming a hot topic in various sectors. Building construction and infrastructure sectors contributed a significant proportion of waste and greenhouse gas (GHG) emissions in the environment of different countries and cities. However, there is little research on the micro-level of waste management, “building construction material wastage management,” and fewer reviews about regulatory control in the building construction sector. This paper focuses on the potentialities and importance of material wastage management and reviews the deficiencies of the current standard to take into account the reduction of material wastage in a systematic and quantitative approach.

Keywords: Quantitative measurement, material wastage management plan, waste management, uncalculated waste, circular economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
2786 Artificial Intelligence for Software Quality Improvement

Authors: Martín Agüero, Franco Madou, Gabriela Esperón, Daniela López De Luise

Abstract:

This paper presents a software quality support tool, a Java source code evaluator and a code profiler based on computational intelligence techniques. It is Java prototype software developed by AI Group [1] from the Research Laboratories at Universidad de Palermo: an Intelligent Java Analyzer (in Spanish: Analizador Java Inteligente, AJI). It represents a new approach to evaluate and identify inaccurate source code usage and transitively, the software product itself. The aim of this project is to provide the software development industry with a new tool to increase software quality by extending the value of source code metrics through computational intelligence.

Keywords: Software metrics, artificial intelligence, neuralnetworks, clustering algorithms, expert systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896
2785 A Novel Approach of Multilevel Inverter with Reduced Power Electronics Devices

Authors: M. Jagabar Sathik, K. Ramani

Abstract:

In this paper family of multilevel inverter topology with reduced number of power switches is presented. The proposed inverter can generate both even and odd level. The proposed topology is suitable for symmetric structure. The proposed symmetric inverter results in reduction of power switches, power diode and gate driver circuits and also it may further minimize the installation area and cost. To prove the superiority of proposed topology is compared with conventional topologies. The performance of this symmetric multilevel inverter has been tested by computer based simulation and prototype based experimental setup for nine-level inverter is developed and results are verified.

Keywords: Cascaded H- Bridge (CHB), Multilevel Inverter (MLI), Nearest Level Modulation (NLM), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
2784 Design Optimization of a Double Stator Cup- Rotor Machine

Authors: E. Diryak, P. Lefley, L. Petkovska, G. Cvetkovski

Abstract:

This paper presents the optimum design for a double stator, cup rotor machine; a novel type of BLDC PM Machine. The optimization approach is divided into two stages: the first stage is calculating the machine configuration using Matlab, and the second stage is the optimization of the machine using Finite Element Modeling (FEM). Under the design specifications, the machine model will be selected from three pole numbers, namely, 8, 10 and 12 with an appropriate slot number. A double stator brushless DC permanent magnet machine is designed to achieve low cogging torque; high electromagnetic torque and low ripple torque.

Keywords: Permanent magnet machine, low- cogging torque, low- ripple torque, high- electromagnetic torque, design optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
2783 An Approach for the Prediction of Cardiovascular Diseases

Authors: Nebi Gedik

Abstract:

Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.

Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
2782 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region

Authors: Mohsen Hayati, Yazdan Shirvany

Abstract:

In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.

Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
2781 Teaching Speaking Skills to Adult English Language Learners through ALM

Authors: Wichuda Kunnu, Aungkana Sukwises

Abstract:

Audio-lingual Method (ALM) is a teaching approach that is claimed that ineffective for teaching second/foreign languages. Because some linguists and second/foreign language teachers believe that ALM is a rote learning style. However, this study is done on a belief that ALM will be able to solve Thais’ English speaking problem. This paper aims to report the findings on teaching English speaking to adult learners with an “adapted ALM”, one distinction of which is to use Thai as the medium language of instruction. The participants are consisted of 9 adult learners. They were allowed to speak English more freely using both the materials presented in the class and their background knowledge of English. At the end of the course, they spoke English more fluently, more confidently, to the extent that they applied what they learnt both in and outside the class.

Keywords: Teaching English, Audio Lingual Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3951
2780 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

Authors: Liqiong Liu, Shouming Zhong

Abstract:

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2779 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.

The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
2778 Cloud Computing Initiative using Modified Ant Colony Framework

Authors: Soumya Banerjee, Indrajit Mukherjee, P.K. Mahanti

Abstract:

Scheduling of diversified service requests in distributed computing is a critical design issue. Cloud is a type of parallel and distributed system consisting of a collection of interconnected and virtual computers. It is not only the clusters and grid but also it comprises of next generation data centers. The paper proposes an initial heuristic algorithm to apply modified ant colony optimization approach for the diversified service allocation and scheduling mechanism in cloud paradigm. The proposed optimization method is aimed to minimize the scheduling throughput to service all the diversified requests according to the different resource allocator available under cloud computing environment.

Keywords: Ant Colony, Cloud Computing, Grid, Resource allocator, Service Request.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
2777 Approximating Maximum Weighted Independent Set Using Vertex Support

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.

Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
2776 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness

Authors: Kirill Trapezon, Alexandr Trapezon

Abstract:

A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.

Keywords: Vibrations, plate, thickness, symmetry, factorization, approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
2775 Multiple Regression based Graphical Modeling for Images

Authors: Pavan S., Sridhar G., Sridhar V.

Abstract:

Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.

Keywords: Belief propagation, Graphical model, Regression, Super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
2774 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach

Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.

Keywords: Bolt joints, slip coefficient, finite element method, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325
2773 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
2772 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: Hydrothermal growth, zinc dioxide, biosensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
2771 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Authors: Indiramma M., K. R. Anandakumar

Abstract:

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.

Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2770 Robust Adaptive Observer Design for Lipschitz Class of Nonlinear Systems

Authors: M. Pourgholi, V.J.Majd

Abstract:

This paper addresses parameter and state estimation problem in the presence of the perturbation of observer gain bounded input disturbances for the Lipschitz systems that are linear in unknown parameters and nonlinear in states. A new nonlinear adaptive resilient observer is designed, and its stability conditions based on Lyapunov technique are derived. The gain for this observer is derived systematically using linear matrix inequality approach. A numerical example is provided in which the nonlinear terms depend on unmeasured states. The simulation results are presented to show the effectiveness of the proposed method.

Keywords: Adaptive observer, linear matrix inequality, nonlinear systems, nonlinear observer, resilient observer, robust estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
2769 A Competitive Replica Placement Methodology for Ad Hoc Networks

Authors: Samee Ullah Khan, C. Ardil

Abstract:

In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality

Keywords: Data replication, auctions, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
2768 Analysis of Control by Flattening of the Welded Tubes

Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche

Abstract:

In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.

Keywords: Flattening, destructive testing, tube drafts, finished tube, Castem 2001.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276