Search results for: sensor selection problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5049

Search results for: sensor selection problem

2469 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
2468 The Partial Non-combinatorially Symmetric N10 -Matrix Completion Problem

Authors: Gu-Fang Mou, Ting-Zhu Huang

Abstract:

An n×n matrix is called an N1 0 -matrix if all principal minors are non-positive and each entry is non-positive. In this paper, we study the partial non-combinatorially symmetric N1 0 -matrix completion problems if the graph of its specified entries is a transitive tournament or a double cycle. In general, these digraphs do not have N1 0 -completion. Therefore, we have given sufficient conditions that guarantee the existence of the N1 0 -completion for these digraphs.

Keywords: Matrix completion, matrix completion, N10 -matrix, non-combinatorially symmetric, cycle, digraph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
2467 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment

Authors: Zoran D. Banjac, Branko D. Kovacevic

Abstract:

The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.

Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
2466 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
2465 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
2464 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
2463 Effect of Transplant Preparation Method on Yield and Agronomic Traits of True Potato Seed (TPS) Progenies in Sahneh Region

Authors: A. Khourgami, M. Rafiee, H. Jafari, Z. Bitarafan

Abstract:

To study the effect of suitable methods for propagation of True Potato Seed (TPS) progenies, transplant and selection of the best progenies, a factorial experiment base on a randomized complete block design was carried out in the research field of Sahneh region, Kermanshah, Iran during 2009-2010. Five selective progenies from CIP (International Potato Center) including CIP.994013, CIP.994002, CIP.994014, CIP.888006, and CIP.994001 and two transplant preparation methods (Paper pot preparation for mechanical cultivation and preparation in transplant trays for manual cultivation) were studied in three replications. Results showed that different progenies had no significant effect on plant height (cm) and tuber yield (t ha-1), whereas had a significant effect on number of tubers per unit area (m2). There was significant difference between transplant preparation methods for plant height and tuber yield. The interaction effect of progenies and transplant preparation method was not significant for these traits. CIP.888006 progeny and paper pot preparation method produced the highest tuber yields. Also CIP.994002 and CIP.994014 progenies considered as the best progenies under paper pot preparation method due to high yields.

Keywords: Potato, Solanum tuberosum, TPS progenies, Transplant preparation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2462 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
2461 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
2460 Diversity Analysis of a Quinoa (Chenopodium quinoa Willd.) Germplasm during Two Seasons

Authors: M. Mhada, E. N. Jellen, S. E. Jacobsen, O. Benlhabib

Abstract:

The present work has been carried out to evaluate the diversity of a collection of 78 quinoa accessions developed through recurrent selection from Andean germplasm introduced to Morocco in the winter of 2000. Twenty-three quantitative and qualitative characters were used for the evaluation of genetic diversity and the relationship between the accessions, and also for the establishment of a core collection in Morocco. Important variation was found among the accessions in terms of plant morphology and growth behavior. Data analysis showed positive correlation of the plant height, the plant fresh and the dry weight with the grain yield, while days to flowering was found to be negatively correlated with grain yield. The first four PCs contributed 74.76% of the variability; the first PC showed significant variation with 42.86% of the total variation, PC2 with 15.37%, PC3 with 9.05% and PC4 contributed 7.49% of the total variation. Plant size, days to grain filling and days to maturity are correlated to the PC1; and seed size, inflorescence density and mildew resistance are correlated to the PC2. Hierarchical cluster analysis rearranged the 78 quinoa accessions into four main groups and ten sub-clusters. Clustering was found in associations with days to maturity and also with plant size and seed-size traits.

Keywords: Character association, Chenopodium quinoa, Diversity analysis, Morphotypic cluster, Multivariate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
2459 Security Risk Analysis Based on the Policy Formalization and the Modeling of Big Systems

Authors: Luc Cessieux, French Navy, Adrien Derock, DCNS/IMATH

Abstract:

Security risk models have been successful in estimating the likelihood of attack for simple security threats. However, modeling complex system and their security risk is even a challenge. Many methods have been proposed to face this problem. Often difficult to manipulate, and not enough all-embracing they are not as famous as they should with administrators and deciders. We propose in this paper a new tool to model big systems on purpose. The software, takes into account attack threats and security strength.

Keywords: Security, risk management, threat, modelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
2458 Long-term Monitor of Seawater by using TiO2:Ru Sensing Electrode for Hard Clam Cultivation

Authors: Jung-Chuan Chou, Cheng-Wei Chen

Abstract:

The hard clam (meretrix lusoria) cultivated industry has been developed vigorously for recent years in Taiwan, and seawater quality determines the cultivated environment. The pH concentration variation affects survival rate of meretrix lusoria immediately. In order to monitor seawater quality, solid-state sensing electrode of ruthenium-doped titanium dioxide (TiO2:Ru) is developed to measure hydrogen ion concentration in different cultivated solutions. Because the TiO2:Ru sensing electrode has high chemical stability and superior sensing characteristics, thus it is applied as a pH sensor. Response voltages of TiO2:Ru sensing electrode are readout by instrument amplifier in different sample solutions. Mean sensitivity and linearity of TiO2:Ru sensing electrode are 55.20 mV/pH and 0.999 from pH1 to pH13, respectively. We expect that the TiO2:Ru sensing electrode can be applied to real environment measurement, therefore we collect two sample solutions by different meretrix lusoria cultivated ponds in the Yunlin, Taiwan. The two sample solutions are both measured for 200 seconds after calibration of standard pH buffer solutions (pH7, pH8 and pH 9). Mean response voltages of sample 1 and sample 2 are -178.758 mV (Standard deviation=0.427 mV) and -180.206 mV (Standard deviation =0.399 mV), respectively. Response voltages of the two sample solutions are between pH 8 and pH 9 which conform to weak alkali range and suitable meretrix lusoria growth. For long-term monitoring, drift of cultivated solutions (sample 1 and sample 2) are 1.16 mV/hour and 1.03 mV/hour, respectively.

Keywords: Co-sputtering system, Hard clam (meretrix lusoria), Ruthenium-doped titanium dioxide, Solid-state sensing electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2457 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
2456 Graphic Analysis of Genotype by Environment Interaction for Maize Hybrid Yield Using Site Regression Stability Model

Authors: Saeed Safari Dolatabad, Rajab Choukan

Abstract:

Selection of maize (Zea mays) hybrids with wide adaptability across diverse farming environments is important, prior to recommending them to achieve a high rate of hybrid adoption. Grain yield of 14 maize hybrids, tested in a randomized completeblock design with four replicates across 22 environments in Iran, was analyzed using site regression (SREG) stability model. The biplot technique facilitates a visual evaluation of superior genotypes, which is useful for cultivar recommendation and mega-environment identification. The objectives of this study were (i) identification of suitable hybrids with both high mean performance and high stability (ii) to determine mega-environments for maize production in Iran. Biplot analysis identifies two mega-environments in this study. The first mega-environments included KRM, KSH, MGN, DZF A, KRJ, DRB, DZF B, SHZ B, and KHM, where G10 hybrid was the best performing hybrid. The second mega-environment included ESF B, ESF A, and SHZ A, where G4 hybrid was the best hybrid. According to the ideal-hybrid biplot, G10 hybrid was better than all other hybrids, followed by the G1 and G3 hybrids. These hybrids were identified as best hybrids that have high grain yield and high yield stability. GGE biplot analysis provided a framework for identifying the target testing locations that discriminates genotypes that are high yielding and stable.

Keywords: Zea mays L, GGE biplot, Multi-environment trials, Yield stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
2455 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
2454 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: Toolpath, part program, optimization, pocket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
2453 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
2452 A Protocol for Applied Consumer Behavior Research in Academia

Authors: A. Otjen, S. Keller

Abstract:

A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.

Keywords: Marketing, experiential learning, consumer behavior, community partner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
2451 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340
2450 The Internet, its Social and Ethical Problem to the Young and How Curriculum Can Address the Issue

Authors: R. Ramli

Abstract:

The impact of the information revolution is double edged. While it is applauded for its versatility and performance robustness and acclaimed for making life smooth and easy, on the other hand people are concerned about its dark side especially to younger generations. The education system should extend its educating role beyond the school to home. Parents should be included in forming the policies of Internet use as well as in the curriculum delivery. This paper discusses how curriculum can be instrumental in addressing social and ethical issues resulted from the Internet.

Keywords: Curriculum, Ethics, Internet Addiction, Social Issues

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4615
2449 A Optimal Subclass Detection Method for Credit Scoring

Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina

Abstract:

In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.

Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2448 Laser Transmission through Vegetative Material

Authors: Juliana A. Fracarolli, Adilson M. Enes, Inácio M. Dal Fabbro, Silvestre Rodrigues

Abstract:

The dynamic speckle or biospeckle is an interference phenomenon generated at the reflection of a coherent light by an active surface or even by a particulate or living body surface. The above mentioned phenomenon gave scientific support to a method named biospeckle which has been employed to study seed viability, biological activity, tissue senescence, tissue water content, fruit bruising, etc. Since the above mentioned method is not invasive and yields numerical values, it can be considered for possible automation associated to several processes, including selection and sorting. Based on these preliminary considerations, this research work proposed to study the interaction of a laser beam with vegetative samples by measuring the incident light intensity and the transmitted light beam intensity at several vegetative slabs of varying thickness. Tests were carried on fifteen slices of apple tissue divided into three thickness groups, i.e., 4 mm, 5 mm, 18 mm and 22 mm. A diode laser beam of 10mW and 632 nm wavelength and a Samsung digital camera were employed to carry the tests. Outgoing images were analyzed by comparing the gray gradient of a fixed image column of each image to obtain a laser penetration scale into the tissue, according to the slice thickness.

Keywords: Fruit, laser, laser transmission, vegetative tissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2447 Heuristic Optimization Techniques for Network Reconfiguration in Distribution System

Authors: A. Charlangsut, N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.

Keywords: Network Reconfiguration, Optimization Techniques, Distribution System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
2446 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: Aeroelasticity, labyrinth packings, oscillation phase shift, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
2445 Criminal Law Instruments to Counter Corporate Crimes in Poland

Authors: Dorota Habrat

Abstract:

The aim of study was to analyze the functioning the new model of criminal corporate responsibility in Poland. The need to introduce into the Polish legal system liability of corporate (collective entities) has resulted, among others, from the Polish Republic's international commitments, in particular related to membership in the European Union. The study showed that responsibility of collective entities under the Act has a criminal nature. The main question concerns the ability of the collective entity to be brought to guilt under criminal law sense. Polish criminal law knows only the responsibility of individual persons. So far, guilt as a personal feature of action, based on the ability of the offender to feel in his psyche, could be considered only in relation to the individual person, while the said Act destroyed this conviction. Guilt of collective entity must be proven under at least one of the three possible forms: the guilt in the selection or supervision and so called organizational guilt. In addition, research in article has resolved the issue how the principle of proportionality in relation to criminal measures in response of collective entities should be considered. It should be remembered that the legal subjectivity of collective entities, including their rights and freedoms, is an emanation of the rights and freedoms of individual persons which create collective entities and through these entities implement their rights and freedoms. The whole study was proved that the adopted Act largely reflects the international legal regulations but also contains the unknown and original legislative solutions.

Keywords: Criminal corporate responsibility, Polish criminal law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2444 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
2443 Interactive Concept-based Search using MOEA:The Hierarchical Preferences Case

Authors: Gideon Avigad, Amiram Moshaiov, Neima Brauner

Abstract:

An IEC technique is described for a multi-objective search of conceptual solutions. The survivability of solutions is influenced by both model-based fitness and subjective human preferences. The concepts- preferences are articulated via a hierarchy of sub-concepts. The suggested method produces an objectivesubjective front. Academic example is employed to demonstrate the proposed approach.

Keywords: Conceptual solution, engineering design, hierarchical planning, multi-objective search, problem reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
2442 Public Private Partnership for Infrastructure Projects: Mapping the Key Risks

Authors: Julinda Keçi

Abstract:

In many countries, governments have been promoting the involvement of private sector entities to enter into long-term agreements for the development and delivery of large infrastructure projects, with a focus on overcoming the limitations upon public fund of the traditional approach. The involvement of private sector through public private partnerships (PPP) brings in new capital investments, value for money and additional risks to handle. Worldwide research studies have shown that an objective, systematic, reliable and useroriented risk assessment process and an optimal allocation mechanism among different stakeholders is crucial to the successful completion. In this framework, this paper, which is the first stage of a research study, aims to identify the main risks for the delivery of PPP projects. A review of cross-countries research projects and case studies was performed to map the key risks affecting PPP infrastructure delivery. The matrix of mapping offers a summary of the frequency of factors, clustered in eleven categories: construction, design, economic, legal, market, natural, operation, political, project finance, project selection and relationship. Results will highlight the most critical risk factors, and will hopefully assist the project managers in directing the managerial attention in the further stages of risk allocation.

Keywords: Construction, infrastructure, public private partnerships, risks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
2441 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
2440 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: Vehicle, monitoring system, LoRa, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102