Search results for: temperature dependent.
769 Deactivation of Cu - Cr/γ-alumina Catalysts for Combustion of Exhaust Gases
Authors: Krasimir Ivanov, Dimitar Dimitrov, Boyan Boyanov
Abstract:
The paper relates to a catalyst, comprising copperchromium spinel, coated on carrier γ-Al2O3. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. It was found that the activity of carbon monoxide, DME, formaldehyde and methanol oxidation reaches a maximum at an active component content of 20 – 30 wt. %. Temperature calcination at 500oC seems to be optimal for the γ– alumina supported CuO-Cr2O3 catalysts for CO, DME, formaldehyde and methanol oxidation. A three months industrial experiment was carried out to elucidate the changes in the catalyst composition during industrial exploitation of the catalyst and the main reasons for catalyst deactivation. It was concluded that the CuO–Cr2O3/γ–alumina supported catalysts have enhanced activity toward CO, DME, formaldehyde and methanol oxidation and that these catalysts are suitable for industrial application. The main reason for catalyst deactivation seems to be the deposition of iron and molybdenum, coming from the main reactor, on the active component surface.Keywords: catalyst deactivation, CuO-Cr2O3 catalysts, deep oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4511768 Environmental Potentials within the Production of Asphalt Mixtures
Authors: Florian Gschösser, Walter Purrer
Abstract:
The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).Keywords: Asphalt mixtures, environmental potentials, life cycle assessment, material production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092767 Skin Effect: A Natural Phenomenon for Minimization of Ground Bounce in VLSI RC Interconnect
Authors: Shilpi Lavania
Abstract:
As the frequency of operation has attained a range of GHz and signal rise time continues to increase interconnect technology is suffering due to various high frequency effects as well as ground bounce problem. In some recent studies a high frequency effect i.e. skin effect has been modeled and its drawbacks have been discussed. This paper strives to make an impression on the advantage side of modeling skin effect for interconnect line. The proposed method has considered a CMOS with RC interconnect. Delay and noise considering ground bounce problem and with skin effect are discussed. The simulation results reveal an advantage of considering skin effect for minimization of ground bounce problem during the working of the model. Noise and delay variations with temperature are also presented.
Keywords: Interconnect, Skin effect, Ground Bounce, Delay, Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138766 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays
Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov
Abstract:
Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270765 Parametric Study of Vertical Diffusion Still for Water Desalination
Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan
Abstract:
Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).
Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399764 Morphological and Dynamic Mechanical Analyses of a Local Clay/Plantain Fiber Filled Hybrid Polystyrene Composites
Authors: K. P. Odimayomi, A. G. Adeniyi, S. A. Abdulkareem, F. M. Oladipo Emmanuel, C. A. Adeyanju, M. A Amoloye
Abstract:
The abundant availability of the local clay/plantain fiber coupled with the various renewable and sustainability advantages has led to their choice as co-fillers in the development of a hybrid polystyrene composite. The prime objective of this study is to evaluate the morphological and dynamic mechanical properties using Scanning Electron Microscopy and Dynamic Mechanical Analysis. The hybrid polystyrene composite development was developed via the hand-lay-up method. All processing including the constituent mixing and curing were achieved at room temperature (25 ± 2 ℃). The mechanical characteristics of the developed composites via Dynamic Mechanical Analysis (DMA) confirm an indirect relationship between time and storage modulus, this pattern becomes more evident at higher frequencies. It is clearly portrayed that the addition of clay and plantain fiber in the polystyrene matrix increases the stiffness of the developed composite.
Keywords: Morphology, DMA, Akerebiata clay, plantain fiber, hybrid polystyrene composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352763 CFD Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel
Authors: Yousif Naif Almutai, Yajue Wu
Abstract:
In larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.
Keywords: Fire, subway tunnel, CFD, ventilation, smoke concentration, harsh weather.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174762 The Study of Chain Initiation Effect on the Direct Initiation of Detonation
Authors: Masoud Afrand, Saeid Farahat, Mehdi Alamkar
Abstract:
In this research, effect of combustion reaction mechanism on direct initiation of detonation has been studied numerically. For this purpose, reaction mechanism has been simulated by using a three-step chemical kinetics model. The reaction scheme consists sequentially of a chain-initiation and chainbranching step, followed by a temperature -independent chaintermination. In a previous research, the effect of chain-branching on the direct initiation of detonation is studied. In this research effect of chain-initiation on direct initiation of detonation is investigated. For the investigation, first a characteristic time (τ) for each step of mechanism, which includes effect of different kinetics parameters, is defined. Then the effect of characteristic time of chain-initiation (τI) on critical initiation energy is studied. It is seen that increasing τI, causes critical initiation energy to be increased. Drawing detonation's shock pressure diagrams for different cases, shows that in small value of τI , kinetics has more important effect on the behavior of the wave.Keywords: Detonation initiation, Initiation energy, Reaction rate, Characteristic time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964761 Bioconversion of Biodiesel Derived Crude Glycerol by Immobilized Clostridium pasteurianum: Effect of Temperature
Authors: Swati Khanna, Arun Goyal, Vijayanand S. Moholkar
Abstract:
Batch fermentation of 5, 10 and 25 g/L biodiesel derived crude glycerol was carried out at 30, 37 and 450C by Clostridium pasteurianum cells immobilized on silica. Maximum yield of 1,3-propanediol (PDO) (0.60 mol/mol), and ethanol (0.26 mol/mol) were obtained from 10 g/L crude glycerol at 30 and 370C respectively. Maximum yield of butanol (0.28 mol/mol substrate added) was obtained at 370C with 25 g/L substrate. None of the three products were detected at 45oC even after 10 days of fermentation. Only traces of ethanol (0.01 mol/mol) were detected at 450C with 5 g/L substrate. The results obtained for 25 g/L substrate utilization were fitted in first order rate equation to obtain the values of rate constant at three different temperatures for bioconversion of glycerol. First order rate constants for bioconversion of glycerol at 30, 37 and 45oC were found to be 0.198, 0.294 and 0.029/day respectively. Activation energy (Ea) for crude glycerol bioconversion was calculated to be 57.62 kcal/mol.Keywords: activation energy, Clostridium pasteurianum, crude glycerol, immobilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087760 Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications
Authors: James Dunia, Bakari M. M. Mwinyiwiwa
Abstract:
Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converters are described. Incremental conductance control method has been used as maximum power point tracking (MPPT) algorithm. The two converters and MPPT algorithm were modelled using MATLAB/Simulink software for simulation. Simulation results show that both Ćuk and SEPIC converters can track the maximum power point with some minor variations.
Keywords: Ćuk Converter, Incremental Conductance, Maximum Power Point Tracking, PV Module, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10228759 Democracy in Pakistan: A Critical Review Through the Lens of Dr. Israr Ahmed and Western Philosophers
Authors: Zoaib Mirza
Abstract:
Pakistan is an Islamic country that got its partition from India in 1947 so that the people could practice the religion of Islam. The political slogan to strive for independence was “What does Pakistan mean? There is no God but Allah”. The ideology of Pakistan was based on the notion that sovereignty only belonged to God Almighty (in Arabic, God means “Allah”), and Muslims will live in accordance with Islam principles. The Quran (Holy Book) and Sunnah (authentic practices of Prophet Mohammad, Peace Be Upon Him, that explains the application of the Quran) are foundations of the Islamic principles. It has been over 75 years, but unfortunately, Pakistan, due to its own political, social, and economic mistakes, is responsible for not being able to become a true Islamic nation to justify its partition from India. The rationale for writing this paper is to analyze the factors that led to changes in the democratic movements impacting the country's political, social, and economic growth. The methodology to examine the historical and political context of Pakistan’s history is by referencing the scholarly work of Israr Ahmed. He focused on Islamic theology, philosophy, and studies, offering insights into the historical and political context of the country. While from a Western perspective, Karl Marx, Mar Weber, Hannah Arendt, Sheldon Wolin, Paulo Freire, and Jacques Ranciere's philosophies specific to totalitarianism, politics, military rule, religion, capitalism, and superpower are used as the framework to analyze Pakistan’s democracy. The study's findings conclude that Pakistan's democracy is unstable and has been impacted by military and civilian governance, which led to political, social, and economic downfall. To improve the current situation, the citizens of Pakistan have to realize that the success of a nation is only dependent on the level of consciousness of the leader and not the political system. Therefore, it is the responsibility of every citizen to be conscious of how they select their leader and take responsibility for the current situation in Pakistan.
Keywords: Pakistan, Islam, democracy, totalitarianism, military, religion, capitalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382758 Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode
Authors: Aritra Acharyya, Moumita Mukherjee, J. P. Banerjee
Abstract:
A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.Keywords: Noise Analysis, Silicon MITATT, Admittancecharacteristics, Noise spectral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607757 Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater
Authors: Patcharee Intanoo, Jittipan Chavadej, Sumaeth Chavadej
Abstract:
The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m3 d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively.
Keywords: Biohydrogen, Alcohol wastewater, Anaerobic sequencing batch reactor (ASBR), Thermophillic operation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103756 Contaminant Transport in Soil from a Point Source
Authors: S. A. Nta, M. J. Ayotamuno, A. H. Igoni, R. N. Okparanma
Abstract:
The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.
Keywords: Contaminant, dispersion, point or leaky source, surface plot, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532755 An Attempt to Predict the Performances of a Rocket Thrust Chamber
Authors: A. Benarous, D. Karmed, R. Haoui, A. Liazid
Abstract:
The process for predicting the ballistic properties of a liquid rocket engine is based on the quantitative estimation of idealized performance deviations. In this aim, an equilibrium chemistry procedure is firstly developed and implemented in a Fortran routine. The thermodynamic formulation allows for the calculation of the theoretical performances of a rocket thrust chamber. In a second step, a computational fluid dynamic analysis of the turbulent reactive flow within the chamber is performed using a finite volume approach. The obtained values for the “quasi-real" performances account for both turbulent mixing and chemistryturbulence coupling. In the present work, emphasis is made on the combustion efficiency performance for which deviation is mainly due to radial gradients of static temperature and mixture ratio. Numerical values of the characteristic velocity are successfully compared with results from an industry-used code. The results are also confronted with the experimental data of a laboratory-scale rocket engine.
Keywords: JANAF methodology, Liquid rocket engine, Mascotte test-rig, Theoretical performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043754 Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field
Authors: Isao Tomita
Abstract:
Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring’s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction.Keywords: Electrical Conduction, Electron Phase Coherence, Polycrystalline Metal, Magnetic Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630753 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application
Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu
Abstract:
Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.
Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910752 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038751 Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions
Authors: Bin Su
Abstract:
The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiencyKeywords: Courtyard, house design, indoor thermal comfort, 'wind-rain' house
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695750 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency
Authors: Abdulrahman M. Homadi
Abstract:
As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.Keywords: Solar panels, elevation, wind direction, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371749 Optimizing of Gas Consumption in Gas-burner Space Heater
Authors: Saead Negahdari, Davood Jalali Vahid
Abstract:
Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.
Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811748 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump
Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi
Abstract:
An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827747 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.
Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385746 Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst
Authors: S. Totong, P. Daorattanachai, N. Laosiripojana
Abstract:
Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.
Keywords: Alkaline lignin, catalytic, depolymerization, fumed SiO2, phenolic-based chemicals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863745 Cloning of a β-Glucosidase Gene (BGL1) from Traditional Starter Yeast Saccharomycopsis fibuligera BMQ 908 and Expression in Pichia pastoris
Authors: Le Thuy Mai, Vu Nguyen Thanh
Abstract:
β-Glucosidase is an important enzyme for production of ethanol from lignocellulose. With hydrolytic activity on cellooligosaccharides, especially cellobiose, β-glucosidase removes product inhibitory effect on cellulases and forms fermentable sugars. In this study, β-glucosidase encoding gene (BGL1) from traditional starter yeast Saccharomycosis fibuligera BMQ908 was cloned and expressed in Pichia pastoris. BGL1 of S. fibuligera BMQ 908 shared 98% nucleotide homology with the closest GenBank sequence (M22475) but identity in amino-acid sequences of catalytic domains. Recombinant plasmid pPICZαA/BGL1 containing the sequence encoding BGL1 mature protein and α-factor secretion signal was constructed and transformed into methylotrophic yeast P. pastoris by electroporation. The recombinant strain produced single extracellular protein with molecular weight of 120 kDa and cellobiase activity of 60 IU/ml. The optimum pH of the recombinant β-glucosidase was 5.0 and the optimum temperature was 50°C.Keywords: β-Glucosidase, Pichia pastoris, Saccharomycopsisfibuligera, recombinant enzyme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4972744 Effect of Lubrication on the Quantity of Heat Emission of two Spur Gears in Meshing
Authors: S. A. M. Elshourbagy
Abstract:
This paper investigates the effects of lubrication on the quantity of heat emission of two spur gear. System with and without lubrication effected on the quantity of heat induced on the gear box (oil - bearings – gears). Both of lubrication and speed of motor are affected on the performance of gears. Research investigated the lubrication on the system with and without loading as well as the wear of gears and bearing's conditions. Gear box investigated includes the motor, pump, two spur gears, two shafts; speed change used pulleys and belts. Load used equal one weight ones of gear. Lubrication mechanism used jet system (upper and lower jet). Gear box we used system of jet lubrication is perpendicular direction of the contact line between two teeth. Results appeared in this work that the lubrication is the vital parameter which is affected on the performance and durability of gears and bearings. In macroscopic observation, we noted that damage of bearings happened during the absence of lubrication as well as abrasive of wear of teeth. Higher speed of motor without lubrication increased the noise, but in the presence of lubrication was decreased.Keywords: Lubrication, jet, laser gun, spur gear, temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728743 1-D Modeling of Hydrate Decomposition in Porous Media
Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi
Abstract:
This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.
Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054742 Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity
Authors: M.Jafari, A.Naysari, K.Bodaghi
Abstract:
In the present study, the lattice Boltzmann Method (LBM) is applied for simulating of Natural Convection in an inclined open ended cavity. The cavity horizontal walls are insulated while the west wall is maintained at a uniform temperature higher than the ambient. Prandtl number is fixed to 0.71 (air) while Rayligh numbers, aspect ratio of the cavity are changed in the range of 103 to 104 and of 1-4, respectively. The numerical code is validated for the previously results for open ended cavities, and then the results of an inclined open ended cavity for various angles of rotating open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number on hot wall decreases for all rotation angles. When gravity acceleration direction is opposite of standard gravity direction the convection heat transfer has a manner same as conduction.
Keywords: Lattice Boltzmann Method, Open Ended Cavity, Natural Convection, Inclined Cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586741 Vibration Analysis of an Alstom Typhoon Gas Turbine Power Plant Related to Iran Oil Industry
Authors: Omid A. Zargar
Abstract:
Vibration analysis is the most important factor in preventive maintenance. Gas turbine vibration analysis is also one of the most challenging categories in most critical equipment monitoring systems. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of this kind of equipment developed too much in recent years. On the other hand, too much operation condition consideration in this kind of equipment should be adjusted properly like inlet and outlet pressure and temperature for both turbine and compressor. In this paper the most important tools and hypothesis used for analyzing of gas turbine power plants discussed in details through a real case history related to an Alstom Typhoon gas turbine power plant in Iran oil industries. In addition, the basic principal of vibration behavior caused by mechanical unbalance in gas turbine rotor discussed in details.
Keywords: Vibration analysis, gas turbine, time wave form (TWF), fast Fourier transform (FFT), phase angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4911740 Metal(loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland
Authors: Magdalena Jabłońska-Czapla
Abstract:
The work allowed gaining knowledge about redox and speciation changes of As, Cr and Sb ionic forms in Klodnica River water. This kind of studies never has been conducted in this region of Poland. In study optimized and validated previously HPLC-ICP-MS methods for determination of As, Sb and Cr was used. Separation step was done using high-performance liquid chromatograph equipped with ion-exchange column followed by ICP-MS spectrometer detector. Preliminary studies included determination of the total concentration of As, Sb and Cr, pH, Eh, temperature and conductivity of the water samples. The study was conducted monthly from March to August 2014, at six points on the Klodnica River. The results indicate that exceeded at acceptable concentration of total Cr and Sb was observed in Klodnica River and we should qualify Klodnica River waters below the second purity class. In Klodnica River waters dominates oxidized antimony and arsenic forms, as well as the two forms of chromium Cr(VI) and Cr(III). Studies have also shown the methyl derivative of arsenic's presence.
Keywords: Antimony, arsenic, chromium, HPLC-ICP-MS, river water, speciation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132