Search results for: creeping discharge
76 Classification of Discharges Initiated by Liquid Droplet on Insulation Material under AC Voltages Adopting UHF Technique
Authors: R. Sarathi, G. Nagesh, K. Vasudevan
Abstract:
In the present work, an attempt has been made to understand the feasibility of using UHF technique for identification of any corona discharges/ arcing in insulating material due to water droplets. The sensors of broadband type are useful for identification of such discharges. It is realised that arcing initiated by liquid droplet radiates UHF signals in the entire bandwidth up to 2 GHz. The frequency content of the UHF signal generated due to corona/arcing is not much varied in epoxy nanocomposites with different weight percentage of clay content. The exfoliated/intercalated properties were analysed through TEM studies. It is realized that corona initiated discharges are of intermittent process. The hydrophobicity of the material characterized through contact angle measurement. It is realized that low Wt % of nanoclay content in epoxy resin reduces the surface carbonization due to arcing/corona discharges. The results of the study with gamma irradiated specimen indicates that contact angle, discharge inception time and evaporation time of the liquid are much lower than the virgin epoxy nanocomposite material.Keywords: Arcing, Corona, epoxy resin, insulation, nanocomposites, UHF signal, water droplet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191675 Analysis of the Root Causes of Transformer Bushing Failures
Authors: E. A. Feilat, I. A. Metwally, S. Al-Matri, A. S. Al-Abri
Abstract:
This paper presents the results of a comprehensive investigation of five blackouts that occurred on 28 August to 8 September 2011 due to bushing failures of the 132/33 kV, 125 MVA transformers at JBB Ali Grid station. The investigation aims to explore the root causes of the bushing failures and come up with recommendations that help in rectifying the problem and avoiding the reoccurrence of similar type of incidents. The incident reports about the failed bushings and the SCADA reports at this grid station were examined and analyzed. Moreover, comprehensive power quality field measurements at ten 33/11 kV substations (S/Ss) in JBB Ali area were conducted, and frequency scans were performed to verify any harmonic resonance frequencies due to power factor correction capacitors. Furthermore, the daily operations of the on-load tap changers (OLTCs) of both the 125 MVA and 20 MVA transformers at JBB Ali Grid station have been analyzed. The investigation showed that the five bushing failures were due to a local problem, i.e. internal degradation of the bushing insulation. This has been confirmed by analyzing the time interval between successive OLTC operations of the faulty grid transformers. It was also found that monitoring the number of OLTC operations can help in predicting bushing failure.Keywords: Modeling and simulation, power system, transformer, bushing, OLTC, power quality, partial discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077674 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.
Keywords: Proficiency test, radiation monitoring, seawater, strontium determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86673 Internal Leakage Analysis from Pd to Pc Port Direction in ECV Body Used in External Variable Type A/C Compressor
Authors: Md. Iqbal Mahmud, Haeng Muk Cho, Seo Hyun Sang, Wang Wen Hai, Chang Heon Yi, Man Ik Hwang, Dae Hoon Kang
Abstract:
Solenoid operated electromagnetic control valve (ECV) playing an important role for car’s air conditioning control system. ECV is used in external variable displacement swash plate type compressor and controls the entire air conditioning system by means of a pulse width modulation (PWM) input signal supplying from an external source (controller). Complete form of ECV contains number of internal features like valve body, core, valve guide, plunger, guide pin, plunger spring, bellows etc. While designing the ECV; dimensions of different internal items must meet the standard requirements as it is quite challenging. In this research paper, especially the dimensioning of ECV body and its three pressure ports through which the air/refrigerant passes are considered. Here internal leakage test analysis of ECV body is being carried out from its discharge port (Pd) to crankcase port (Pc) when the guide valve is placed inside it. The experiments have made both in ordinary and digital system using different assumptions and thereafter compare the results.
Keywords: Electromagnetic control valve (ECV), Leakage, Pressure port, Valve body, Valve guide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285372 Radio-Frequency Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil G. Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold Radio-Frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for cold RF plasma application on paper documents, developed within a research project. The equipment consists in two modules: the first one is designed for decontamination and cleaning treatments of any type of paper supports, while the second one can be used for coating friable papers with adequate polymers, for protection purposes. All these operations are carried out in cold radio-frequency plasma, working in gaseous nitrogen, at low pressure. In order to optimize the equipment parameters ancient paper samples infested with microorganisms have been treated in nitrogen plasma and the decontamination effects, as well as changes in surface properties (color, pH) were assessed. The microbiological analysis revealed complete decontamination at 6 minutes treatment duration; only minor modifications of the surface pH were found and the colorimetric analysis showed a slight yellowing of the support.Keywords: Cultural heritage, nitrogen plasma, paper support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260471 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries
Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos
Abstract:
Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.
Keywords: Ceramics, microstructure, electrochemical measurements, energy storage, transmission electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188870 Using Reuse Water for Irrigation Green space of Naein City
Authors: Nasri M., Soleimani A.
Abstract:
Since water resources of desert Naein City are very limited, a approach which saves water resources and meanwhile meets the needs of the greenspace for water is to use city-s sewage wastewater. Proper treatment of Naein-s sewage up to the standards required for green space uses may solve some of the problems of green space development of the city. The present paper closely examines available statistics and information associated with city-s sewage system, and determines complementary stages of sewage treatment facilities of the city. In the present paper, population, per capita water use, and required discharge for various greenspace pieces including different plants are calculated. Moreover, in order to facilitate the application of water resources, a Crude water distribution network apart from drinking water distribution network is designed, and a plan for mixing municipal wells- water with sewage wastewater in proposed mixing tanks is suggested. Hence, following greenspace irrigation reform and complementary plan, per capita greenspace of the city will be increased from current amount of 13.2 square meters to 32 square meters.Keywords: Sewage Treatment Facility, Wastewater, Greenspace, Distribution Network, Naein City
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164569 Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin
Authors: H. Alaleh, N. Hedayat, A. Alaleh, H. Ayazi, A. Ruhani
Abstract:
Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.
Keywords: Simple tank, Dez River, run-off, lag time, excess rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259368 Comparison of Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulator under Salt Water Dip Wheel Test
Authors: J. Grasaesom, S. Thong-om, W. Payakcho, A. Oonsivilai, B. Marungsri
Abstract:
This paper presents the experimental results on ageing deterioration of silicone rubber outdoor polymer insulator under salt water dip wheel test based on IEC 62217. In order to comparison effect of chemical contents, silicone rubber outdoor polymer insulators having same configuration and leakage distant from two manufactures were tested together continuously 30,000 test cycles. Many discharge activities were observed in during the test. After 30,000 test cycles, in spite of same configuration, differences in degree of surface aging were observed. Physical analysis such as decreasing in hydrophobicity and increasing in hardness measurement were measured on two-type tested specimen surface in order to confirm degree of surface ageing. Furthermore, chemical analysis by ATR-FTIR to diagnose the chemical change of tested specimen surface was conducted to confirm the physical analysis results.Keywords: ageing of silicone rubber, salt water dip wheel test, silicone rubber polymer insulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348567 Use of Biomass as Co-Fuel in Briquetting of Low-Rank Coal: Strengthen the Energy Supply and Save the Environment
Authors: Mahidin, Yanna Syamsuddin, Samsul Rizal
Abstract:
In order to fulfill world energy demand, several efforts have been done to look for new and renewable energy candidates to substitute oil and gas. Biomass is one of new and renewable energy sources, which is abundant in Indonesia. Palm kernel shell is a kind of biomass discharge from palm oil industries as a waste. On the other hand, Jatropha curcas that is easy to grow in Indonesia is also a typical energy source either for bio-diesel or biomass. In this study, biomass was used as co-fuel in briquetting of low-rank coal to suppress the release of emission (such as CO, NOx and SOx) during coal combustion. Desulfurizer, CaO-base, was also added to ensure the SOx capture is effectively occurred. Ratio of coal to palm kernel shell (w/w) in the bio-briquette were 50:50, 60:40, 70:30, 80:20 and 90:10, while ratio of calcium to sulfur (Ca/S) in mole/mole were 1:1; 1.25:1; 1.5:1; 1.75:1 and 2:1. The bio-briquette then subjected to physical characterization and combustion test. The results show that the maximum weight loss in the durability measurement was ±6%. In addition, the highest stove efficiency for each desulfurizer was observed at the coal/PKS ratio of 90:10 and Ca/S ratio of 1:1 (except for the scallop shell desulfurizer that appeared at two Ca/S ratios; 1.25:1 and 1.5:1, respectively), i.e. 13.8% for the lime; 15.86% for the oyster shell; 14.54% for the scallop shell and 15.84% for the green mussel shell desulfurizers.
Keywords: Biomass, low-rank coal, bio-briquette, new and renewable energy, palm kernel shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267766 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater
Authors: Usha N. Murthy, Rekha H. B., Mahaveer Devoor
Abstract:
The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.
Keywords: Electrochemical treatment, COD, color.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239365 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.
Keywords: Bell spring, karst, Daryan Dam, submerged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122064 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance
Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.
Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274163 Comprehensive Regional Drought Assessment Index
Authors: A. Zeynolabedin, M. A. Olyaei, B. Ghiasi
Abstract:
Drought is an inevitable part of the earth’s climate. It occurs regularly with no clear warning and without recognizing borders. In addition, its impact is cumulative and not immediately discernible. Iran is located in a semi-arid region where droughts occur periodically as natural hazard. Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) are three well-known indices which describe drought severity; each has its own advantages and disadvantages and can be used for specific types of drought. These indices take into account some factors such as precipitation, reservoir storage and discharge, temperature, and potential evapotranspiration in determining drought severity. In this paper, first all three indices are calculated in Aharchay river watershed located in northwestern part of Iran in East Azarbaijan province. Next, based on two other important parameters which are groundwater level and solar radiation, two new indices are defined. Finally, considering all five aforementioned indices, a combined drought index (CDI) is presented and calculated for the region. This combined index is based on all the meteorological, hydrological, and agricultural features of the region. The results show that the most severe drought condition in Aharchay watershed happened in Jun, 2004. The result of this study can be used for monitoring drought and prepare for the drought mitigation planning.Keywords: Drought, index variation, regional assessment, monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126062 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia
Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus
Abstract:
This study was carried out to investigate the adverse effect of industrial wastewater on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from six sampling stations. Physicochemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The results revealed that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The results also showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study revealed that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of wastewater management for environmental sustainability around the study area.Keywords: Gebeng, heavy metals, waste water, water quality index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232561 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190760 Pollution Induced Structural and Physico-Chemical Changes in Algal Community: A Case Study of River Pandu of North India
Authors: Seemaa Diwedi
Abstract:
The study area receives a wide variety of wastes generated by municipalities and the industries like paints and pigments, metal processing industries, thermal power plants electroprocessing industries etc. The Physico-chemical and structural investigation of water from river Pandu indicated high level of chlorides and calcium which made the water unsuitable for human use. Algae like Cyclotella fumida, Asterionella Formosa, Cladophora glomerata, Pediastrum simplex, Scenedesmus bijuga, Cladophora glomerata were the dominant pollution tolerant species recorded under these conditions. The sensitive and less abundant species of algae included Spirogyra sps., Merismopedia sps. The predominance colonies of Zygnema sps, Phormidium sps, Mycrocystis aeruginosa, Merismopedia minima, Pandorina morum, seems to correlate with high organic contents of Pandu river water. This study assumes significance as some algae can be used as bioindicators of water pollution and algal floral of a municipal drain carrying waste effluents from industrial area Kanpur and discharge them into the river Pandu flowing onto southern outskirts of Kanpur city.Keywords: Kanpur, North India, Physico-chemical, Pollution, River Pandu.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190859 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.
Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143658 Experimental Investigation on the Lithium-ion Battery Thermal Management System Based on U-Shaped Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
In this study, a type of active air cooling thermal management system (TMS) based on U-shaped micro heat pipe array (MHPA) is established for the battery energy storage box which operates in high ambient temperature all the year round. The thermal management performance of the active air cooling TMS based on U-shaped MHPA under different ambient temperatures and different cooling conditions is analyzed by the method of experimental research. Results show that even if the battery energy storage box operates at a high ambient temperature of 45 °C, the active air cooling TMS based on U-shaped MHPA controls not only the maximum temperature of the battery in the battery energy storage box below 55 °C, but also the maximum temperature difference in the battery energy storage box below 5 °C during the whole charge-discharge process. The experimental results provide guidance for the application of the battery energy storage box TMS that operates in high temperature areas.
Keywords: Active air cooling, lithium-ion battery, micro heat pipe array, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35157 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory
Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma
Abstract:
Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.Keywords: Petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115156 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle
Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada
Abstract:
In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216455 Hydrogeological Risk and Mining Tunnels: the Fontane-Rodoretto Mine Turin (Italy)
Authors: Paola Gattinoni, Laura Scesi, Elena Cerino Adbin, Daniele Cremonesi
Abstract:
The interaction of tunneling or mining with groundwater has become a very relevant problem not only due to the need to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems, but also to safeguard water resources from impoverishment and pollution risk. Therefore it is very important to forecast the drainage processes (i.e., the evaluation of drained discharge and drawdown caused by the excavation). The aim of this study was to know better the system and to quantify the flow drained from the Fontane mines, located in Val Germanasca (Turin, Italy). This allowed to understand the hydrogeological local changes in time. The work has therefore been structured as follows: the reconstruction of the conceptual model with the geological, hydrogeological and geological-structural study; the calculation of the tunnel inflows (through the use of structural methods) and the comparison with the measured flow rates; the water balance at the basin scale. In this way it was possible to understand what are the relationships between rainfall, groundwater level variations and the effect of the presence of tunnels as a means of draining water. Subsequently, it the effects produced by the excavation of the mining tunnels was quantified, through numerical modeling. In particular, the modeling made it possible to observe the drawdown variation as a function of number, excavation depth and different mines linings.Keywords: Groundwater, Italy, numerical model, tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192854 Numerical Solution of Manning's Equation in Rectangular Channels
Authors: Abdulrahman Abdulrahman
Abstract:
When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228353 Groundwater Contamination due to Bhalaswa Landfill Site in New Delhi
Authors: Bharat Jhamnani, SK Singh
Abstract:
Sampling and analysis of leachate from Bhalaswa landfill and groundwater samples from nearby locations, clearly indicated the likely contamination of groundwater due to landfill leachate. The results of simulation studies carried out for the migration of Chloride from landfill shows that the simulation results are in consonance with the observed concentration of Chloride in the vicinity of landfill facility. The solid waste disposal system presently being practiced in Delhi consists of mere dumping of wastes generated, at three locations Bhalaswa, Ghazipur, and Okhla without any regard to proper care for the protection of surrounding environment. Bhalaswa landfill site in Delhi, which is being operated as a dump site, is expected to become cause of serious groundwater pollution in its vicinity. The leachate from Bhalaswa landfill was found to be having a high concentration of chlorides, as well as DOC, COD. The present study was undertaken to determine the likely concentrations of principle contaminants in the groundwater over a period of time due to the discharge of such contaminants from landfill leachates to the underlying groundwater. The observed concentration of chlorides in the groundwater within 75m of the radius of landfill facility was found to be in consonance with the simulated concentration of chloride in groundwater considering one dimensional transport model, with finite mass of contaminant source. Governing equation of contaminant transport involving advection and diffusion-dispersion was solved in matlab7.0 using finite difference method.Keywords: Groundwater, landfill, leachate, solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385352 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138051 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.
Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131150 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement
Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin
Abstract:
An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.
Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319849 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel
Authors: Joseph C. Chen, Joshua Cox
Abstract:
This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.
Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108848 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195647 A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum
Authors: Adnan F. Sheikh, Fayaz A. Mir
Abstract:
After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples.
Keywords: Comprehensive flood management programme, dredge soil, strength characteristics, flood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 887